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1 Introduction

As one looks around the world, many objects fall into view at once.
Intuitively, one has the impression that a great deal of information
about these objects is immediately available. For instance, as I stare
at my computer terminal, I am aware not only of the terminal but also
of many words printed on the screen, a blue book and a small yellow
notepad sitting on my desk, the shiny metal rim of the desk, and even
the texture of the wooden desktop. Is this merely an illusion? Am I
simply switching rapidly among the various objects, or is there some
sense in which I can truly apprehend many objects simultaneously? If
the former, how is the switching controlled? If the latter, what are the
limits on parallel processing of sensory information?

A rich body of experimental data has accumulated that hints at
answers to these questions: Psychologists have examined the amount
of information required to overload the perceptual system, errors pro-
duced when the system is overloaded, factors that influence the diffi-
culty of perception, and the breakdown of the perceptual system as
exhibited by neurological patients. This book describes a computa-
tional model that can explain a broad spectrum of such data. In doing
so, the model makes concrete predictions as to what sorts of informa-
tion the visual system can process in parallel and what sorts must be
processed serially. The model is called MORSEL for its ability to per-
form multiple object recognition and attentional selection. MORSEL
is a working computational model that, in its present implementation,
is primarily directed at letter and word recognition and et *ly stages of
reading. MORSEL goes beyond most psychological theori, s in that it
is a fully mechanistic account, not just a functional-level thy ry. It is
further distinguished by addressing an extremely wide scope ot data.

MORSEL integrates and builds upon many of the recent develop-
ments in the perceptual and attentional literature (Duncan & Hum-
phreys, 1989; Fukushima, 1987, Fukushima & Miyake, 1982; Hinton,
1981b; LaBerge & Brown, 1989; Marcel, 1983a,b; McClelland, 1985,
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1986a; McClelland & Rumelhart, 1981; Pashler & Badgio, 1987,
Treisman & Gelade, 1980). In fact, it can be viewed as a synthesis of
these various theoretical perspectives. Surprisingly, the conglomera-
tion fits together rcasonably well, and addresses some important issues
in representation, including the type-token distinction.

The book is divided into seven chapters. The remainder of chapter
1 presents a brief introduction to the class of connectionist models and
sketches a rough overview of MORSEL. Chapters 2—5 describe each
of MORSEL’s components in detail. Chapter 6 reports on simulation
experiments using MORSEL (o replicate phenomena in the experimen-
tal literature and discusses other phenomena that MORSEL is well-
equipped to account for. Finally, chapter 7 provides a summary
evaluation of the model and notes several unresolved problems.

1.1 Connectionist Models

Massively parallel models of computation have shown promising
results in the areas of pattern recognition, memory, learning, and
language comprehension (Anderson & Hinton, 1981; Feldman & Bal-
lard, 1982; McClelland, Rumelhart, & Hinton, 1986). These models,
called connectionist or parallel distributed processing models, offer a
new approach to the representation and manipulation of knowledge.
They consist of a large number of simple neuron-like processing units
operating in parallel. In most cases, cach unit represents a possible
hypothesis; for example, in the perceptual domain the hypotheses con-
cern the presence or absence of features in the environment. Units
have varying degrees of "confidence” in the truth of their hypotheses.
The degree of confidence is quantified by an internal state variable of
the unit, its activation level. Units can transmit their activation levels
to one another through connecting links. Links may be either excita-
tory or inhibitory. When tw) units represent mutually compatible
hypotheses, they are connecteld by an excitatory link. Excitatory links
cause the confidence in one. ypothesis to increase the confidence in
the other hypothesis. When . vo units represent mutually incompati-
ble hypotheses, they are conr 'cted by an inhibitory link. Inhibitory
links cause the confidence in one hypothesis to decrease the confi-
dence in the other hypothesis. The outcome of any computation in a
connectionist network is thus the result of cooperation and competi-
tion among a large number of simple processors.
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To be concrete, consider an early and often cited connectionist
model, the interactive activation (IA) model of word perception
(McClelland & Rumethart, 1981; Rumelhart & McClelland, 1982),
sketched in figure 1.1, The model consists of three levels: feature,
letter, and word levels. Each unit at the feature and lefter levels
represents the hypothesis that a particular feature or letter is present in
a given position; each word unit represents the hypothesis that the
letters form a particular word. The model "sees" a visual input pattern
by having a subset of its feature units activated. Feature units then
excite their corresponding letter units, and Ietter units their
corresponding word units. Connections between levels are bidirec-
tional, so that word units excite their corresponding letter units and
letters their features. Additionally, units within a rectangle in figure
1.1 are mutually inhibitory. Once set into motion, activation flows
through this network until a stable interpretation of the perceptual
input is settled upon.

1.1.1 Local and Distributed Representations

The question of how to represent entities, whether they be hypotheses,
objects, concepts, or schemata, is critical in connectionist modeling.

Word

Letter

Feature

Inpat

Figure 1.1 A sketch of the interactive activation model of word perception. Connec-
tions are shown for a single word and its constituents. (Reprinted with permission
from "Putting knowledge in its place: A scheme for programming parallel processing
structures on the fly" by I. L. McClelland, in Cognifive Science, 9, p. 115. Copyright
1985 by Ablex Publishing.)
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At one extreme, an entity may be represented by the activity of a sin-
gle unit, in which case the representation is said to be local. For
example, in the IA model, the representation at the word level is local,
with one unit per word. Traditional semantic network models also
adopt a local representation scheme (e.g., Collins & Quillian, 1969).
In contrast, an entity may be represented by the activity of more than
one unit and each unit may be involved in the representation of more
than one entity, in which case the representation is said to be distri-
buted and the active units are said to form a pattern of activity across
the set of available units. Distributed representations may be sparse
or dense, depending on the proportion of active units. For example,
the letter level of the TA model specifies a sparsely distributed
representation of a word in that each word is represented by the
activity of 4 out of 4 x 26 letter-level units. The feature level of the
model specifies a somewhat denser representation, with about 16 of
56 feature-level units active for each word.

Local and distributed representational schemes differ along several
functional dimensions, the primary ones being: (1) the number of
entities that can be veridically represented simultaneously, and (2) the
degree to which the representations facilitate generalization.

1.1.1.1 Representing Multiple Entities

Local representations allow as many entities to be represented at once
as there are units. For instance, multiple words can be activated
simultaneously at the word level of the IA model because there is one
unit for each word. This representation is faithful (Smolensky, 1990),
meaning that a one-to-one mapping exists between sets of words and
patterns of activity. Distributed representations, in contrast, have dif-
ficulty in faithfully representing multiple entities. For instance, at the
letter level of the TA model, the simultaneous activation of several
words leads to ambiguity: BOOR and HEAT yield the same activity pat-
tern as BOOT and HEAR, or BEAR and HOOT for that matter. To
represent multiple entities without confusion in a distributed represen-
tation, the representation must specify which units participate in the
representation of which entity—in the above example, which letters
belong in which word. Smolensky (1990) discusses a class of
representations that are able to solve this difficult problem, formally
known as the binding problem. Examples of this class can be found in
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St. John and McClelland (1986} and Touretzky and Hinton (1985,
1988). In chapter 2, I present a representation of this class that has a
limited ability to encode muiltiple words simultaneously without
confusing which letters belong in which word.

1.1.1.2 Generalization

Whereas local representations are better suited to the representation of
multiple entities than distributed representations, distributed represen-
tations often have the advantage when it comes to generalization.
Generalization is the ability to respond appropriately to an unfamiliar
entity based on experience with a set of familiar entities. In distri-
buted connectionist networks, this desirable property occurs naturally,
and takes the form of similar responses being made to entities having
similar representations (Hinton, 1980; McClelland, Rumethart, Hin-
ton, 1986). Similarity of representation is defined in terms of the dis-
tance or angle between the activity vectors representing the entities.
In many cases, this is equivalent to the number of active units shared
by the representations of the entities. Because a local representation
of one entity shares no units with that of another, local representations
do not facilitate generalization. On the other hand, it is a logical
consequence of most distributed representations that two entities with
properties in common will have overlapping patterns of activity. For
instance, the encodings of BEAT and BEAR at the letter level overlap
on three of four features—B, E, and A. With this representation, it is
casy to consfruct or frain a network to respond in a certain way to all
words beginning with B or all words with a vowel in the second posi-
tion; such generalizations will not readily emerge using local
representations of words.

1.1.2 Types and Tokens in Connectionist Models

An apparent weakness of the connectionist approach is its difficulty in
handling the type-token distinction (Norman, 1986). The problem
here is how to represent different instances (tokens) of the same entity
(type) in a manner that will uphold their similarity yet allow them to
be treated as distinet. For example, consider how one might represent
two visual stimuli: a green neon WALK sign at a pedestrian crossing
and a flashing red WALK sign (the latter indicating that the sign will
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shortly change to DON’T WALK). On the one hand, it is desirable for
the two representations to be identical so that the appropriate response
will be produced in either situation—walking across the street. On the
other hand, it is important to encode the color of the sign so that one
situation can be treated differently than the other—perhaps the walker
should be more vigilant if the sign is flashing red.

A natural way of characterizing tokens of a given type is through
the use of similar-but-distinct distributed representations. Imagine a
pool of units in which one subset of the units represents a green WALK
sign and another subset a flashing red WALK sign. The overlap
between the two patterns of activity represents the type "walk," while
the nonoverlap is what allows one token to be distinguished from the
other. Viewing tokens in this manner, the problem of representing
types and tokens seecms only an extreme case of the more general
problem of representing similarity. Two tokens are an extreme case
because they are highly similar,'

Assuming then that tokens are represented as similar-but-distinct
activity patterns, the next concern is how to handle multiple tokens
simultaneously, or more generally, how to handle similar items simul-
taneously. The problem here is that two similar items will have
highly overlapping patterns of activity, and it will be difficult to disen-
tangle one pattern from the other. Thus, specialized processing struc-
tures are required to operate on these representations.

1.2 MORSEL: An Overview

With the preceding discussion, I hope to have raised several general
issues in connectionist modeling, issues particularly pertinent to build-
ing a model of multiple-object recognition. I will return to these
issues later as they come to bear on the work. In the remainder of this
chapter, I present a brief overview of MORSEL.

Figure 1.2 shows a sketch of MORSEL. The heart of MORSEL is a
set of processing subsystems or modules that analyze a visual input

1 An obvious localist representation of types and tokens would be to have one unit for
each token, and to represent the type by the union of the token units. However, as
with any local representation, this scheme has serious limitations due to the number of
token units required in high-dimensional feature spaces and the fact that similarity is
not explicitly encoded.
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Visual
Short-Term
Memory

LX)

Attentional Mechanism o,

L peassistssansoes

Shape Detection Module Colot Detection Module Motien Detection Module

? ; 3

Figure 1.2 A sketch of MORSEL.

along independent atiribute dimensions. The figure depicts three
modules which detect object shape, color, and motion. These modules
have the capacity to analyze multiple objects in parallel, but resource
limitations cause a degradation in the quality of analysis as the
amount of information to be processed increases. Consequently, two
additional components are required: a "clean up" mechanism (called
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the pull-out network or PO net) that constructs a consistent interpreta-
tion of the somewhat noisy perceptual data produced by the modules,
and an attentional mechanism (or AM for short) that guides the efforts
of the modules and prevents them from attempting to process too
much information at once. The AM works by selectively gating the
flow of activity through the various modules. The final component of
MORSEL is a visual short-term memory that bundles together attri-
butes of an object and holds on to many object descriptions simultane-
ously.

To describe the typical operation of the model, consider a simple
example in which MORSEL is shown a display containing two colored
letters, a red X and a blue T. These letters will cause a pattern of
activity on MORSEL’s "retina,” which serves as input to each of the
processing modules as well as to the attentional system. The atten-
tional system then focuses on one retinal region, say the location of
the red X. Information from that region is processed by each module.
The module that extracts shape information might identify the object
as an "x" or, if the stimulus is noisy or processing is insufficient, pos-
sibly a "y"; the module that extracts color information might identity
the object as being red. The PO net then selects the most plausible
interpretation produced by each module, in this case "x" and "red."
The representation at this level of the system (and at the outputs of the
modules) encodes attributes of the visual form without regard to loca-
tion. Location information is recovered from the AM, which indicates
the current location and breadth of focus. Shape, color, and location
information can then be bound together and stored in the short-term
memory or used as desired by higher-level systems, Next, attention
shifts to the blue T, and this process is repeated. I defer further details
until later, but note that if attention is not focused on a particular
region of the retina, all items in the retina are processed in parallel and
crosstalk among the items can ensue. This crosstalk can cause one
item to interfere with the perception of another.

1.2.1 Modular Organization

My use of the term "module” is consistent with that of Fodor (1983)
and Marr (1982), and roughly corresponds to the feature-registration
stage of Treisman and Gelade’s (1980) feature-integration theory.
The primary properties of these modules are: (a) they encode
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perceptually independent information, and consequently, the computa-
tions performed by one module are irrelevant with respect to those
performed by other modules; (b} they receive no "top-down" input
from higher levels of the system; and (c) they operate automatically in
the sense that allocation of processing resources is not necessary.
These properties allow the modules to operate quickly and efficiently.

The modules could be anatomically distinct entities in the brain or
merely functionally independent. Both possibilities are likely: the
visual system may be prewired fo analyze color and motion informa-
tion along different pathways (Van Essen & Maunsell, 1983); other
stimulus dimensions, such as letter shape and letter case, may be
analyzed independently (Friedman, 1980) but specialized processing
channels as these are surely experience dependent.

My focus has been on constructing a module that performs letter
and word recognition, described in chapter 2. This is the only module
I have implemented, though the others can be viewed as operating in a
similar manner. It seems somewhat presumptuous to bill MORSEL as
a model of multiple-object perception when only letter and word per-
ception is discussed. However, my aim is to focus on multiple-object
perception; hence, the particular objects are of secondary interest. The
model generalizes quite readily to arbitrary two-dimensional line
drawings, a point I return to in chapter 7.



2 Multiple Word Recognition

In this chapter, I describe a network capable of simultaneously recog-
nizing multiple words appearing in arbitrary locations in the visual
field. There is a dual problem that goes hand in hand with this one:
the network must also recognize a single word as being the same,
independent of its location, despite the fact that different locations
may give rise to quite different patterns of activity on the retina. This
problem is variously known as translation-invariant recognition or
stimulus equivalence (Hebb, 1949; Neisser, 1967), and is an instance
of the more general problem of shape constancy under any set of
transformations such as transiation, dilation, and rotation.

2.1 Prior Connectionist Models of Multiple Word Recogni-
tion

McClelland and Rumelhart’s TA model of word perception did not
have to face either the problem of multiple-word recognition or
translation-invariant recognition because it was designed to deal with
single words in a prespecified position. That is, input to the model
consisted of a set of features corresponding to the first letter in a word,
to the second letter, and so forth; retinal position was not considered.
How might such a model be extended to deal with the registration of
multiple words distributed spatially across a visual image? Two
approaches have been suggested.

2.1.1 The Hardware-Replication Approach

The simplest possibility is to have an independent word recognition
subsystem, essentially a copy of the IA model, operating at each
region of the retina. This approach requires extreme redundancy,
because all knowledge implicit in the network—the connections that
specify how features combine to form letters and letters to form
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words—must be replicated for each local subsystem. Further, the
approach is inflexible if connection strengths need to be adaptively
updated. To avoid the problems associated with replicated hard-wired
connections, McClelland (1985, 1986a) has suggested a mechanism,
the connection information distributor, in which all connections are
dynamically programmed from a central knowledge source.

Using this mechanism, McClelland developed a model called
PABLO that is able to process several words simultaneously and exhi-
bits crosstalk when the network is overloaded. Basically, the model
works as follows: When a set of words is presented, local position-
specific letter detectors become activated and feed their activity into a
common central pool of letter units. These central letter units serve as
input to a central word analyzer, which identifies all words that can be
formed from the letters currently reaching it, preserving some infor-
mation about relative within-string position. The central word
analyzer then feeds information back to local word analyzers, setting
up temporary connections that allow the detection of all words
currently active in the central analyzer, The letters that are present on
each set of local detectors combine with the top-down input to allow
identification of the appropriate words.

PABLO has been tested on a small lexicon consisting of two to four
letter words. Given the nature of the representations used, it is not
entirely clear how well the model will function with longer words.
Also, PABLO has not been implemented in a form that will handle
words translated along a continuous retina; input to the model is at the
letter level, not the feature level. PABLO has several more serious
limitations.

e Although this mechanism avoids the replication of knowledge
across local subsystems, replication of hardware is necessary.
Specifically, each subsystem requires a sufficient number of
dedicated units and connections to perform the letter-to-word
mapping, and one subsystem is required for each possible loca-
tion in which a word might appear. To handle a reasonable-
sized visual field, the amount of hardware needed is inelegant,
if not unwieldy. Hardware requirements of PABLO and the
word recognition system described below are compared in
appendix A. Conservatively, PABLO requires an order of mag-
nitude more connections and processing units.
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s The output of PABLO, which is simply the concatenation of the
outputs of the local subsystems, contains no explicit
translation-invariant representation of a recogriized word. Thus,
the system does not achieve translation invariance without an
additional component that combines outputs of the various sub-
systems.

+ PABLO seems to be too powerful as a model of human informa-
tion processing, particularly with regard to its ability to main-
tain item-location bindings precisely and to process multiple
items without proximity-based interference effects. Experimen-
tal reports of human perceptual errors (see chapter 6) suggest in
fact that precise location information is not maintained in the
visual system, and that interference is dependent on proximity.
PABLO may not produce comparable errors. As a simple exam-
ple, McClelland notes that PABLO has "no difficulty processing
the same word twice if it occurred in two different locations.”
{McClelland, 1986a, p. 165). However, people do not have a
corresponding ability to keep track of multiple tokens of the
same type, at least in brief displays (Mozer, 1989).

e The connectivity of PABLO is somewhat baroque. Extremely
specific conneclions are required, consisting primarily of one-
to-one reciprocal mappings: Inputs from the local subsystems
converge to the central knowledge store, and outputs from the
central knowledge store diverge back to the local subsystems.

2.1.2 The Normalization Approach

An alternative suggestion for processing multiple entities is a normali-
zation scheme, proposed by, among others, Hinton (1981a,b; Hinton
& Lang, 1985), McCulloch and Pitts (1943), and Palmer (1984). The
basic idea is to apply transformations to a portion of the retinal image
in an attempt to "normalize" an object in position, scale, and orienta-
tion. The normalization procedure effectively factors out any transfor-
mational differences between two instances of the same object in the
retinal image. Once normalized, an image can be analyzed by a rigid
template-matching system like the IA model.

This approach requires a set of units representing the retinal image
and another set representing the normalized image, as well as a means
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of selecting which region of the retina to normalize. In Hinton’s
scheme, selection is performed by a set of mapping units, each of
which represents one possible mapping between the retinal image and
the normalized image. The mapping units gate the flow of activity
between the retinal-image units and the normalized-image units (i.e.,
activity can flow along a connection only if the mapping unit is
active). Connections are symmetric, so that retinal-image units gate
the flow of activity between normalized-image and mapping units,
and normalized-image units gate the flow of activity between retinal-
image and mapping units. This allows predetermined values on any
two sets of units to fill in the value of the third. Appendix A com-
pares hardware requirements of this scheme and my model. The nor-
malization approach requires roughly the same number of connections
and units as my model.

This approach provides a means of achieving translation-invariant
recognition. The price paid is that only one object can be recognized
at a time.! Another objection that has been raised to this approach is
that it demands a rigidity of connection and a type of functional speci-
ficity of units quite different from that observed in the brain (Singh,
1966).

2.2 The Linearity-Nonlinearity Dilemma

While PABLO is able to recognize multiple words in parallel, it does
not yield translation-invariant representations because its outputs are
tied to the local processing structures. Conversely, while the normali-
zation approach achieves a translation-invariant representation, it is
unable to operate on multiple words in parallel. An ideal solution
would be a network that could perform both multiple-word recogni-
tion and translation-invariant recognition, Unfortunately, these dual
goals are conflicting. To illustrate the conflict, consider the visual
system in terms of its input-output properties. If the system is to pro-
cess multiple words, its response to simultaneously presented words
should be identical to the sum of its responses to each word presented

| Although object recognition is serial, the approach does not deny a considerable
amount of early parallel processing of the retinal image. That is, the "retinal-image"”
units could represent higher-order retinotopic features that are computed in paraliel
from the image itself,
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in isolation. That is, the processing of one word should not interact
with the processing of another.? If the visual system is to achieve this
independence, it must operate linearly. Linear systems have the pro-
perty of superposition, namely that the combined response to several
stimuli is the sum of the responses to the individual stimuli.

However, if the system is to achieve a translation-invariant
response, nonlinearities are required. A franslation-invariant system
that is purely linear cannot detect letter arrangements. For instance,
compare the response of such a system to the words ON and NO.
Because the system is linear, the response to ON is simply the sum of
the responses to O in the first position and N in the second; likewise,
NO is the sum of N in the first position and O in the second. Further,
because of translation invariance, the response to a given letter will be
independent of its position; hence the system will respond identically
to ON and NO. Thus, the property of superposition will prevent the
system from responding to position-dependent interactions within a
word,

To summarize, nonlinearities are important for encoding meaning-
ful relations among letters, but when distinct words are to be identi-
fied simultaneously, interactions caused by nonlinearitics represent
only noise. Thus, the issue of linearity versus nonlinearity presents a
major dilemma for any model that attempts to perform both multiple-
word recognition and translation-invariant recognition. The letter and
word recognition module of MORSEL proposes one solution to this
dilemma. Essentially, the solution is to include nonlinearities at early
stages of the system where the relations among letters are encoded,
but to make later stages of the system, where the responses to multiple
words are combined, linear.

2.3 BLIRNET

The letter and word recognition module of MORSEL is a network
whose purpose is to detect information concerning the identities of
one or more letter strings appearing on its "retina,” regardless of the
strings’ locations. This network is called BLIRNET because it builds

2 At later semantic stages of anatysis such interactions are to be expected, but presum-
ably not in a system that is concerned with visual pattern recognition,
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location invariant representations of multiple letter strings (also
because the operation of the network "blurs” the input via a coarse-
coded representation}. BLIRNET is a multilayered hierarchical net-
work, the bottom layer of which serves as input and the top layer as
output. Before describing the architecture of BLIRNET, it is useful to
consider the representations at the input and output layers.

2.3.1 Input Representation

Presentation of a visual display causes a pattern of activity on
MORSEL’s "retina.” In the current implementation, the retina is a
feature map arranged in a 36 X 6 spatial array, with detectors for five
feature types at each point in the array. The input pattern is thus com-
posed of 1,080 (= 36 x 6 x 5) units. The input feature types, inspired
by Julesz’s (1981) textons, are oriented line segments at 0°, 45°, 90°,
and 135°, and line-segment terminator detectors. T assume that the
registration of these simple visual features occurs via some parallel,
unlimited capacity process (see Folk & Egeth, 1989, for experimental
confirmation).

To present letters and words, I designed a font in which each letter
is encoded as a binary activity pattern over a 3 x 3 retinal region. The
letters are all upper case, and visually similar letters yield similar
activity patterns. This can be seen in the confusion matrix of figure
2.1, where each entry is the normalized dot product of the 45-element
activity patterns corresponding to the given pair of letters, p; and p»:

pip2
el o2l

This is a measure of the proportion of features two letters share. Pairs
like P and R or O and Q share many features, whereas pairs like E and Y
orM and T share few if any.

Letter strings can be encoded as a sequence of letters placed in hor-
izontally adjacent 3 x 3 regions. Figure 2.2 depicts the retinal
representation of the phrase OUR NATION. An empty 3 X 3 region
separates one word from the other. The retina can be packed with up
to 24 letters by forming two rows, each containing 12 letters.
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Figare 2.1 Confusion matrix for pairs of upper-case letters presented to BLIRNET.

2.3.2 Output Representation

Units in the output layer of BLIRNET have been trained to detect the
presence of particular sequences of letters. These units, called letfer-
cluster units, respond to local arrangements of letters but are not sensi-
tive to the larger context or the absolute retinal location of the letters.
For example, there might be a unit that detects the sequence NAT, and
it would become activated by words like NATION or DOMINATE
presented in any location on the retina, though not by BOTANY or
GRANITE, which contain N, A, and T but in a different order. Thus, the
only location information retained at the output level consists of the
relative positions of letters within a cluster. This representation

430
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Figure 2.2 The top array shows the superimposed feature activations for a sample in-
put, the phrase GUR NATION, positioned on the model’s retina, The remaining arrays

represent the individual retinotopic feature maps,

Each character in an array

represents the activity of a single unit. A "." indicates that the unit is off. A "-", /",
"I", "™\' indicates activity of the corresponding unit in the 0°, 45°, 90°, 135° line seg-
ment map, respectively, and "o" indicates activity in the line segment terminator map.

contrasts with ones in which absolute letter position is encoded (e.g.,
the letter level of McClelland and Rumelhart’s TA model). Recent
psychological data favor a relative positional encoding (Humphreys,

Evett, & Quintan, 1990).
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The letter-cluster units respond to triples of letters in four consecu-
tive slots, either a sequence of three adjacent letters, such as NAT,
or two adjacent letters and one nearby letter, such as NA_I or N_TI,
where the underbar indicates that any single letter—but not an empty
space—may appear in the corresponding position.> An asterisk is used
to signify an empty space; for example, **N is an N with two spaces to
its left. (Double asterisks are used simply to keep all names in the
form XXX, XX_X, or X_XX.) Presentation of NATION should result in the
activation of the following letter-cluster units: **N, **_A, *NA, * AT,
*N_T, NAT, N_TI, NA_I, ATI, A_I0, AT O, TIO, T_ON, TIL_N, ION, I_N*, I0_%*,
ON*, 0_**, and N#**, Note that the first two and last two letters of a
string are explicitly encoded as such—here, #*N, **_A 0 ** and N**,
If a string has more than four letters, however, the positions of the
string’s inner letters can be determined only by examining the ensem-
ble of letter-cluster activations and reconstructing the original arrange-
ment of letters.

While strings with fewer than four letters can be packed into a sin-
gle letter-cluster unit, these strings are still represented by the set of all
appropriate units. Thus, short strings are in principle no different than
longer strings: each is represented by a distributed pattern of activity
across the letter-cluster units. Even isolated letters can be represented
with triples of the form #*X, *x* and x**, Thus, the letter-cluster level
of representation can substitute for both the letter and word levels
found in many other models (¢.g., McClelland & Rumelhart, 1981).

The letter-cluster coding scheme is analogous to Wickelgren’s
(1969) context-dependent allophone code used to represent the
pronunciation of a word. The interesting thing about this scheme is
that the unordered set of codes is generally sufficient to reconstruct
the ordered components of the word. Thus, the set of units activated
by a word uniquely determines that word: the representation is faith-
ful. Pinker and Prince (1988; Prince & Pinker, 1988) point to several
limitations of this representation; for instance, if the codes consist of
friples, they are inadequate fo represent strings containing repeated
digraphs. However, the representation can generally be expanded to

3 1t is not critical to the behavior of the mode] that the units represent letter triples.
The important property is that they encode chunks of information larger than isolated
letters and smaller than entire words. Any sort of conjunctive coding (Smolensky,
1950} will suffice.
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overcome this limitation, indeed, this is why I included clusters of the
form xx_x and X_xx as well as consecutive letter triples. Further, the
representation need not be constructed by hand; connectionist learning
procedures can be used to discover representations of this sort that are
guaranteed to be faithful (Mozer, 1989, 1990).

The letter-cluster coding scheme is interesting in another important
respect. It allows for the simultaneous representation of multiple
words, up to certain limits on the number of words and the amount of
overlap among words. For example, if the letter-cluster units
appropriate for the words PINT and TOAD are simultaneously
activated, there is sufficient information in the letter-cluster activity
pattern to reconstruct the identities of the two words. The problem of
reconstruction becomes increasingly difficult with increasing similar-
ity among words. For example, if PINT and HUNT are presented, only
three units—-*PI, PIN, and PI_T—can help determine which letter fol-
lows the P, wherecas with PINT and TOAD, units such as P_NT and INT
jointly provide supporting evidence. The problem of reconstruction
also grows with the number of words, because large sets of words
inevitably contain some overlap.

2.3.2.1 How Many Letter-Cluster Units are Necessary?

There are 56,966 possible letter clusters of the form described above.
With this set of clusters, virtually any word of any length can be
represented, an improvement over a local representation that would
require one unit per word. The situation is better still. With only the
1,000 most common letter clusters, over 50% of all clusters that
appear in English words arc accounted for; with the top 6,000, over
95% of all clusters are accounted for when word frequency is taken
into consideration (result based on Kuera & Francis, 1967). I there-
fore take 6,000 as the approximate number of clusters required in a
full-scale simulation model.

This relatively small set of clusters is clearly capable of represent-
ing orthographically regular nonwords as well as English words. Of
course, the ultimate validity of the letter-cluster representation is
determined not by the number of strings than can be represented but
by the ease with which later stages of processing can use the informa-
tion contained in the representation. It turns out, as I discuss in
chapters 3 and 5, that this distributed representation of a word can be
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as effective as a local representation. In fact, there are no "word units"
to be found in MORSEL; they simply aren’t necessary. The letter-
cluster representation is far more flexible, given properties mentioned
above,

2.3.3 Architecture

I now consider how BLIRNET achieves the desired input-output map-
ping, that is, the transformation from low-level position-specific
features into high-level position-invariant features. The architecture
to accomplish this transformation is diagramed in figure 2,3. BLIR-
NET consists of a series of layers, the bottom layer (L) being the
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Figure 2.3 The architecture of BLIRNET. The network consists of 6 layers, arranged
in retinotopic maps of decreasing dimensions. At each point within a map, indicated
by & ciecle, there is one unit for each feature type. The number of feature types is
shown in the column on the left. The receptive field of a unit is depicted by a box
around its set of input units. To simplify the sketch, only some connections from L,
to Ly are shown. (Reprinted with permission from "Early parallel processing in read-
ing: A connectionist approach” by M. C. Mozer, in M, Coltheart, Ed., Awrtention and
performance XII: The psychology of reading, p. 89. Copyright 1987 by Erlbaum As-
sociates.)

(@]
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"retina" described previously and the top layer (L) the letter-cluster
detectors. Intermediate layers (L,-Ls) register successively higher-
order features with decreasing spatial resolution. Each layer can be
thought of as a retinotopic map of certain dimensions, with detectors
for a certain number of feature types at each point in the map. L has
a 36 x 6 map with five elementary feature types. At each successive
layer, the map dimensions decrease and the number of feature types
increases. L4 has a 1 x | map, meaning that there is no encoding of
location, with approximately 6,000 feature types—the letter-cluster
unifts,

The network is strictly feedforward: activations flow unidirection-
ally from the input to the output layer. Figure 2.3 also shows the pat-
tern of connectivity among units. The general rule of connectivity is
that each unit in layer i+1 (L;,;) may potentially receive input from
all units of all feature types in a local spatial region of layer i (L;).
This region is indicated by a box drawn around the L; units and con-
necied to the L;,; unit,

The operation of the network can be divided into two distinct
stages. The I -Ls mapping aims to recode the input into a
translation-invariant representation. The L s-L 4 mapping then recodes
this representation into the letter-cluster representation. The distinc-
tion between these two parts of the network is reflected in the fact that
connection strengths between units are set differently in each part: in
L-L 5, weights are prewired and fixed, whereas in L s-L g, weights are
learned (see Widrow, Winter, & Baxter, 1987, for a related two-stage
model).

2.3.4 Connection Strengths

The connections between L and L5 are set up such that units in each
layer detect conjunctions of features from the layer below. The
motivation underlying this mapping is roughly as follows: If units in
L; . encode relations among 7 -tuples of features in L;, spatial resolu-
tion in L;,; can be cut by a factor of n without losing the information
required to reconstruct the relative spatial arrangement of the L;
features. To illustrate this peint, consider a two-layer network with
two spatial positions in the lower layer (L. |) and one in the upper (L ;).
In each L | position are 26 units, one for each letter of the alphabet; in
L, are 26x26 units, one for each pairing of letters. By encoding
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conjunctions of letters in L, information about the ordering of letters
is retained even without an explicit spatial representation.

The idea, then, is for L ;-L 5 to factor out explicit spatial information
entirely, and instead maintain spatial information in terms of the rela-
tive positions of features. The problem with a straightforward realiza-
tion of this idea is that the number of features needed at each level
grows exponentially: given o, features in L;, ¢f features are needed
in L;,; to encode all combinations of size n. However, exponential
growth can be avoided if, instead of encoding each L;,, feature by a
single unit, each is represented as a distributed pattern of activity
across the L; ; units (see Hinton, McCleland, & Rumelhart, 1986, for
a discussion of the advantages of distributed representations and
coarse coding). In practice, I’ve found that the present architecture
requires only on the order of o;n? L;,; units to do the job, a signifi-
cant improvement over o

What features are detected in L,-Ls? The need for distributed
representations precludes the existence of psychologically real
features like "letters” and "letter pairs." In fact, BLIRNET goes to the
opposite extreme: units in L,-L ¢ detect random conjunctions of
features in the layer below. That is, the connection strengths between
layers are actually chosen at random, under several constraints:

1. Connections are set such that all weights from L; units of
feature type u to L;,| units of feature type v are identical.
Thus, 5 x 45 different weights characterize the connections
from L to L,. This constraint guarantees a uniform response
across the spatial map: All units of a given feature type will
respond identically to a given pattern appearing within their
receptive field. Moreover, it guarantees a uniform response
within a single unit’s receptive field: a unit’s response to a
given pattern will not vary with location so long as the pattern
lies entirely within the unit’s receptive field. The group invari-
ance theorem (Minsky & Papert, 1988) suggests that, given the
present architecture and the desire to achieve translation invari-
ance, there is no setting of the weights that will do better than to
have the sort of uniform connectivity specified by this con-
straint.

2. The weights are either —1 (inhibitory connection), 0 (no connec-
tion), or +1 {excitatory connection).
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3. At least one connection to each unit must be nonzero.

4. The density of nonzero (+1 or —1) connections between L; and
L; 1, denoted p;, is chosen to ensure that patterns of activity at
higher layers do not become too distributed and that most infor-
mation is preserved from one layer to the next. p, was .348, p;
was .139, p; was .067, and p4 was .065. These densities were
arrived under the presupposition that information in the L;
representation is preserved to the extent that the conjunction of
each pair of L; features is detected by at least one L; ., unit and
that each L;; unit responds to as few such conjunctions as pos-
sible. 4 Thus, what one seeks is the lowest density of nonzero
connections to ensure that nearly all L; feature pairs are within
the receptive field of at least one L; ,; unit.

If there are o; L; and oy, L;,, feature types, then the proba-
bility that a given L;,; unit contains a given pair of L; units in
its receptive field is

Gl ~2

C

oypi—2  oyp;(oyp;—1)
o (=D

C

O Py

The probability that no L; ., unit contains a given pair is simply

i+l

_op; (o p=1) |”
oy (o ~1)

Setting this probability to an arbitrarily small desired value, say
.05, one can solve for the minimum value of p; and obtain the
densities listed above.

Because of constraint 1, the mapping from one layer to the next is
extremely "sloppy" or "blurry" in that a single L;,; unit is unable to
detect the relative arrangement of L; features within its receptive

4 Marr (1969) uses a similar criterion to determine the optimal size of the coden
representation in his model of the cerebellum. Note that while this is a necessary con-
dition for information to be preserved, it is not sufficient.
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field; it is only able to detect the total number of tokens of a given
feature type. Given this pattern of connectivity, L,-Ls units might
respond when, for example, there are more tokens of type 1 within
their receptive fields than tokens of type v, or when the total number
of tokens of type u, v, and w cxceeds a threshold.

The aim of the L ,-L 5 mapping is to construct a translation-invariant
representation. However, the simple rules of connectivity stated
above do not permit the network to achieve this goal exactly. The L s
representation varies somewhat as a stimulus is moved across the
retina because in different locations, different portions of the stimulus
fall into different receptive fields. Due to constraint 1, however, the
variation cannot be extremely large, and hence it is reasonable to sup-
pose that some aspects of the L 5 representation—cues contained in the
representation—ought to be translation invariant. The weights
between Ls and Lg are adjusted with the aim of discovering these
cues. The weight-training procedure will be discussed in section
24.1.

2.3.5 System Dynamics

L units are turned on with an activation level of 1 if the correspond-
ing feature is present on the retina, or 0 otherwise. L,-L g units are set
according to the activation rule

l'i'j _f( Z Z Zwuvbt‘;\yl)

xeXhye¥; u

where bvu is the activity level of the layer / umt in location (I, j) of
feature type v (the b stands for BLIRNET), w/, is the strength of con-
nection from feature type u in layer /-1 to feature type v in layer /,
and X/; and Y}, indicate the spatial extent of connectivity. The func-
tion f reiates a unit’s net input to its activation level:

1
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This is an S-shaped sigmoid function whose range can be scaled by
the constants @; and ¢y. These constants were selected for each layer
of BLIRNET so that the response of L,-Ls units ranged from

f(net)=
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approximately —1 to 1, and the response of L units from 0 to 1. The
steepness of the logistic function can be adjusted by the constant ;.
Values of x; that are large relative to the domain of f result in highly
nonlinear threshold-like behavior, whereas small values result in
nearly linear behavior. Thus, for large &;, one obtains units that turn
on if and only if the net input surpasses a threshold, and for small x;,
units whose output is proportional to the net input. k; was selected for
each layer so that units in L, behaved essentially as binary-threshold
units, and successive layers yielded increasingly linear behavior. A
key principle of BLIRNET is embodied in this choice of values: Non-
linearities are important in the lowest layers of the network to encode
local relationships among neighboring features, but linearity Is
important in higher layers to allow the superposition of activations
from different words (cf. Cavanaugh, 1984). This principle is
BLIRNET’s solution to the linearity-nonlinearity dilemma raised in
section 2.2.

Values of x;, Oy, and ¢; are presented in table 2.1. Let me note
several points concerning these values.

e One might have expected x; to decrease monotonically with /.
However, the effect of this constant depends not only on its
magnitude but also on the range of values spanned by the net
input (net) which in turn is dependent on the unit’s receptive
field size.

» K5 was set such that all net inputs to Ls fell within the linear
range of the sigmoid function. Due to the linearity of L 5 units,
there would have been no advantage fo increasing the number
of feature types from L4 to L5, because no additional informa-
tion could have been preserved by doing so. Consequently, the
number of L 5 feature types was 720, the same as L 4.

Table 2.1 Activation Function Parameters

layer Ky &, &
2 3.890 0.980 0.500
3 0.244 0.900 0.500
4 0.347 0.800 0.500
5 0.085 6.600 0.500
6 1.060 1.000 0.060
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e Using the back propagation algorithm (Rumelhart, Hinton, &
Williams, 1986), it is possible to derive a rule for adjusting «;
in order to optimize performance (Aw; ~ — JdE /dx;). It would be
interesting to sece whether such a rule would indeed select
values of k; that yield increasingly linear behavior at successive
layers of the network. I have not conducted this simulation.

2.3.6 Comments on the Architecture

Before settling upon the architecture and parameters described above,
I explored a variety of alternatives (subject to computational con-
straints that limited the exploration). These alternatives included: dif-
ferent receptive field sizes; weights that decreased as a function of dis-
tance from the receptive ficld center; weights that were normalized to
equate excitatory and inhibitory potentials, as well as to equate poten-
tials across units; continuous as opposed to integer weights; and
activation levels that ranged from ¢ to 1 instead of —1 to 1. These
alternatives were optimized according to the criteria that L 5 yielded:
(1) as nearly as possible the same activity pattern when a given letter
string was presented in various positions, and (2) as distinct as possi-
ble patterns when different strings were presented. This was measured
by presenting a single string in various positions (position varying or
PV trials) and presenting various strings in a single position (identity
varying or IV trials). The resulting L5 activity vector for each was
recorded. Averaging the PV vectors, a profofype vector was obtained,
and the angle between the prototype and each PV and IV vector was
found. A z-statistic was then computed on the difference of the mean
PV and IV angles (Winer, 1962, p. 36). The larger this statistic was,
the more similar the PV vectors were to the prototype and the more
distinct the TV vectors were from the prototype, a good indication of
how easy it would be for a network to learn to discriminate PV (trials
(all having the same identity) from IV trials (all having other identi-
ties). Thus, in considering two alternative architectures, the one yield-
ing the largest z-statistic was selected. The point of this digression is
simply to state that the design of BLIRNET was not happenstance but
involved an empirical study of the alternatives.

Nonetheless, the precise architecture of BLIRNET is not critical and
surely does not affect the qualitative behavior of the model. One
extreme constraint on the architecture comes from the fact that
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translation-invariant pattern recognition cannot be realized in a two-
layer network of binary-threshold units (Minsky & Papert, 1988);
thus, all solutions to the problem require at least one hidden layer.
However, the exact number of layers used is not a critical parameter of
the architecture. I've chosen six to allow for a smooth collapsing of
the retinal map. Similarly, the exact number of feature types per layer
and the particular connectivity pattern used are fairly arbitrary deci-
sions.

It is interesting and suggestive that BLIRNET s hierarchical layered
architecture and localized receptive fields are consistent with the qual-
itative neurophysiology and neuroanatomy of visual cortex (Crick &
Asanuma, 1986; Van Essen & Maunsell, 1983). Other connectionist
approaches to transformation-invariant visual recognition have also
made use of essentially the same architecture (Fukushima & Miyake,
1982; Le Cun, et al., 1990; Sandon & Uhr, 1988; Uhr, 1987; Zemel,
Mozer, & Hinton, 1989, 1990). A comparison of Fukushima &
Miyake’s neocognitron and BLIRNET is particularly illuminating,
although the neocognitron was designed primarily for achieving
invariance under pattern distortion, not for the recognition of multiple
objects. The neocognitron is also a layered architecture, but each
layer consists of two sets of units, simple and complex cells. The sim-
ple cells recognize location-specific patterns and the complex cells
generalize across location. Such an architecture can yield fully
translation-invariant representations, in contrast to the only approxi-
mate representation yielded by L,-Ls of BLIRNET, but requires
extreme specificity in its connectivity as well as a far greater number
of units and connections. Similar statements can be made for the
other hierarchical connectionist architectures.

One important dimension along which the various hierarchical
architectures differ is whether the lower layers are hardwired or
whether their connections are adjusted via learning., This was not a
decision I faced at the time with BLIRNET, primarily because connec-
tionist learning algorithms for multi-layered nets had not come into
practical use. However, there are good reasons for hardwiring the
lower layers of BLIRNET. First, because the network is not specifi-
cally programmed for letter and word recognition, it promises to gen-
eralize well to the recognition of other two-dimensional shapes (see
section 7.2.2). Second, allowing adaptable connections only in the
last layer of BLIRNET greatly improves the convergence rate of
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learning; learning in deeply layered networks with back propagation
can be very slow. Third, to achieve translation invariance, it is impor-
tant for the network to detect the same features uniformly across the
retina. If the connections in the lower layers are adaptable, there must
be some means of enforcing this uniformity, In the neocognitron, for
instance, connections are modified during training using a highly non-
local weight updating scheme: the changes to one set of weights are
broadcast to all other units of the same type. This sort of an updating
scheme violates the connectionist spirit and is neurally implausible.
In contrast, while the present architecture does require the replication
of weights across each retinotopic map, these weights are hardwired
and are based on simple rules of connectivity. It is not difficult to
imagine genetic instructions to wire cells of one type to cells of
another type. Alternatively, simple wiring patterns of the sort
required here can be given developmental rather than genetic explana-
tion (e.g., Linsker, 1988).

Despite the advantages of prewiring the lower layers of BLIRNET, I
would suggest to others interested in implementing a similar model
that they opt for back propagation learning in the lower layers, with
additional weight constraints to ensure the uniformity of feature detec-
tion across the retina. Allowing learning should not affect the qualita-
tive behavior of the system, but it should improve its quantitative per-
formance: It is highly unlikely that the network designer will be as
clever as back propagation in selecting intermediate features.

2.4 Training Methodology

2.4.1 Word Simulation

A full-scale implementation of BLIRNET is a costly proposition.
While the total number of units in the network is only 12,660, the
computational cost of a simulation is related to the number of connec-
tions, of which there are approximately 218,000 between L, and L
and 4,320,000 between L 5 and L. Consequently, it was necessary to
scale down the simulation in some fashion. The method I chose was
to reduce the nuinber of letter-cluster {L¢) units. Instead of the 6,000
letter-cluster units I had assumed previously, only 540 were used-—the
540 most frequently occurring clusters in English weighted by relative
word frequency (as determined from the Kufera & Francis, 1967,
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corpus). This reduced the number of Ls-L ¢ connections tenfold, and
the total number of connections in BLIRNET to approximately
606,800,

What words can be formed from these clusters? Nine hundred and
nine words were found which had the property that at least 70% of
their clusters were among this set. The words ranged in length from 2
to 10 letters, with a mean of 6.2. The number of letter clusters per
word ranged from 6 to 26, with a mean of 15.3. Each cluster appeared
in at least one word, and the most frequent cluster in 295 words; the
mean number of words per cluster was 24.8,

Using these words as stimuli, BLIRNET was trained to activate the
appropriate clusters in response to a word appearing on its retina. Due
to a slight decrease in sensitivity around the edges of L |, words were
not allowed to lie in the top or bottom row or in the three leftmost or
rightmost columns. For an n-letter word, these constraints still per-
mitted 62-6n possible locations.” There were a total of 22,626 word-
location combinations.

On ecach training trial, a word was selected at random from the
stimulus set and presented in a random location on L;; activations
were allowed to flow through BLIRNET to Lg; and the L s activity pat-
tern was then associated with the word’s letter clusters in Ly by
adjusting the weights w,S, using a slightly modified form of the LMS
rule (Widrow & Hoff, 1960):

Awu?! = nbvﬁ* (l_b\'ﬁ* )(df_bvﬁ)busa

where d.0 is the desired activation level of letter-cluster unit v—1 or
0, 1 is the learning rate, and

1 ifpf<.1
bS5 =4 bo if 1<H%<.9
9 ifbS> 9.

5 There are two legal vertical positions: rows 2-4 and rows 3-5. The npumber of legal
horizontal positions depends on the length of the word. The word must begin to the
right of column 3 and to the left of column 34-3#, for a total of 31-3n legal posi-
tions. Taking the product of legal vertical and horizontal positions, one obtains
62—-6n.
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This rule results in increased activity of the appropriate clusters and
decreased activity of the inappropriate clusters on future presentations
of the word. With appropriate choice of n, it is guaranteed to con-
verge eventually on a set of weights that will perform the desired L 5-
L¢ mapping with minimum squared error (Widrow & Hoff, 1960;
Widrow & Stearns, 1985).

Initially, 1} was fixed at .0002 and was increased to .001 following
100 training passes. The initial values of w,5 were chosen from a nor-
mal distribution with a mean of zero, and were normalized so that the
sum of the positive weights equaled 1 and the sum of the negative
weights —1. This led to an expected output of .5 for untrained letter-
cluster units.

The training procedure was repeated for each of the 909 words in
the corpus for approximately 300 passes through the corpus. Mean
square error decreased steadily and in fact had not reached an asymp-
totic level after 300 passes (272,700 training trials). While it does not
appear that the error will ever fall to zero, performance of the system
is presently stable and should show few qualitative effects with further
training,

2.4.2 Letter Simulation

In a separate simulation, BLIRNET was trained to recognize individual
letters. BLIRNET’s ocutput consisted of 26 units of the form =x*, On
each training trial, between one and three letters were selected at ran-
dom and placed in random locations on the retina, with the constraint
that letters were not allowed to overlap. Letters were presented in the
same range of horizontal positions as the words but in only one verti-
cal position (the top of the letter being in row two). This permitted
over thirty million possible stimulus patterns. Nonetheless, the net-
work was able to learn quite rapidly; the results to be presented were
obtained after only 25,000 training trials.

This simulation could just as well have been part of the larger one.
That is, a single network could have been constructed with 540 letter-
cluster units plus the 26 individual letter units, instead of two distinct
networks. Due to software considerations, however, it was easier to
separate the two. Combining the two networks might slightly increase
the difficulty of the learning task, because BLIRNET must learn not to
activate the letter units when words are presented, and vice versa.
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However, because the output units are not directly connected to each
other and the lower level weights are fixed, the letter and word learn-
ing tasks are basically independent.

In the remainder of this chapter, I discuss the results of the word
simulation; I will refer to the letter simulation in following chapters.

2.5 Simulation Results

2.5.1 Response to Single Words

Figure 2.4 shows a sample output of the system: the response to
BORED presented on the retina with upper-left corner in location
(17,3). The clusters of BORED (the target activations) are printed in
upper case, all others (the spurious activations) in lower case. Spuri-
ous activations with activation levels below .05 have been omitted.
The height of a cluster on the graph indicates its activity level, a value
from zero to one. The clusters are spread out along the x-axis to

1.0 “on : Eﬁu

ORE E s
0.9—s o *_OR Om
0.6
g’ 0.7
o *ho RED
R ]
c os T ined
o
prm ep
U 0.5 g
> bro
5 .
0.3
**_a
0.2~ . ED
end
\d
0.1+ iea: xr{l .
ied e

0.0

Approximate position in word

Figure 2.4 Letter-cluster activations in response to BORED with upper-left corner in
location (17,3). (Reprinted with permission from "Early parallel processing in read-
ing: A connectionist approach” by M. C. Mozer, in M. Coltheart, Ed., Atfention and
performance XI: The psychology of reading, p. 94. Copyright 1987 by Erlbaum As-
sociates.)
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represent the approximate position of a cluster within the word. Note
that this dimension is not intrinsic to the letter-cluster representation,;
values along this dimension were manually selected for this particular
example to simplify viewing of the clusters.

Figure 2.4 is typical of the letter-cluster activity pattern produced in
response to a word. Most target clusters are highly active, at least
relative to the spurious activations. The types of spurious activations
are also typical. Generally, spurious activations fall into four
categories:

1. substitution errors— clusters that would be appropriate if one
letter of the word were substituted for another visually similar
letter, such as P in position 1 (**P, *PO, *P_R) or L in position 3
(LED, L_D*, LE_*);

2. insertion errors—clusters that would be appropriate if a letter
or two were inserted into the word, such as sticking an N
between the E and the D (END, EN_*, ND*);

3. deletion errors—clusters that would be appropriate if a letter or
two were deleted from the word, such as dropping the ED (R**)
or just the D (R_**); and

4. transposition errors—clusters that would be appropriate if two
adjacent letters of a word were transposed, such as the O and R
(BRO, *B_0O, #* R).

The response to BORED in other locations is quite similar; BLIRNET
has clearly learned to recognize words independent of their retinal
position. In fact, BLIRNET has even generalized to novel positions.
This could be tested by presenting words near the edges of the retina,
such that the word fell in the top row, bottom row, or leftmost or
rightmost three columns. During training words were never presented
in these exact positions, yet BLIRNET still produced reasonable
responses.

The response to longer words is as accurate as to shorter words,
indicating that the number of simultaneously presented letters is not a
limiting factor., Figure 2.5 presents an example of a longer word,
NOMINATION.

A more formal analysis of BLIRNET’s performance was conducted
by presenting each of the 909 words in five random locations and then
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Figure 2.5 Letter-cluster activations in response to NOMINATION with upper-left
corner in location (4,2).

collecting statistics on BLIRNET’s responses. Starting with the sim-
plest measure of performance, the mean activation level of target clus-
ters was .64, whereas the mean activation of nontarget clusters was
only .01. The summed activity of all target clusters was on average
9.95 per word, compared to only 4.25 for (the nearly 540) nontargets.
Further, only 1.5 nontarget clusters per word had activation levels
larger than the mean activation level of target clusters for that word.
To verify the breakdown of spurious activations suggested above,
spurious activations in the 909 x 5 trial sample were analyzed. Only
clusters whose activity level rose above .05 were considered; there
were 101,399 such clusters in the sample. Each spurious activation
was classified into one of the four error categories listed above in
addition fo a category for errors that could be interpreted as a combi-
nation of two primitive error types (e.g., both a deletion and a substi-
tution error, such as activation of ER* in response to FASTENS), and
finally, a catch-all category for other errors. The distribution of errors
is shown in table 2.2. Although one cannot verify that the "combina-
tion"” errors are indeed a combination of several primitive errors, as
opposed to spurious noise, the distribution of errors nonetheless
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Table 2.2 Distribution of Spurious Cluster Activations

Error Type % of Errors
Substitution Errors 32.09
Insertion Errors 7.36
Deletion Errors 19.80
Transposition Errors 12.44
Combination Errors 14.31
Other Errors 14.00

strongly supports the classification in terms of four primitive error
types.6

Shifting the focus from words to letter clusters, an important ques-
tion concerns how good a letter-cluster unit is at discriminating words
that contain the cluster from words that do not. At best, the cluster
will always be active when a word containing it is presented and inac-
tive otherwise; at worst, the cluster’s activity level will have no rela-
tion to the word that was presented. A measure of discriminability
was obtained in the following manner. The mean activity of each
cluster was computed over trials in which it was a target and trials in
which it was a nontarget. Taking these means to represent the proba-
bility of the unit being active when the cluster is contained in a word
and the probability of being active when not contained in a word,
respectively, an index of detectability of the cluster, d’, was computed
(Green & Swets, 1966). Over all clusters, the average d’ was 2.83.
Individual d’ values are presented in appendix B along with the
number of words in which each cluster appears. Because d’ is meas-
ured in standard deviation units, d’ values above 2 indicate a high
degree of discriminability.

Admittedly, these statistics do not give the whole story because
even a few spurious activations might allow an alternative interpreta-
tion of the letter-cluster activity pattern. Chapter 3 deals with the
issue of interpreting the letter-cluster outputs.

6 The psychological plausibility of this error distribution cannot be ascertained direct-
Iy. Spurious activations do not strictly correspond to errors produced by human ob-
servers. However, spurious activations such as these allow BLIRNET to account for a
variety of human error data (see chapter 6), and thus are validated indirectly.
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2.5.2 Response to Unfamiliar Strings

Is BLIRNET able to generalize from the set of words on which it was
trained to unfamiliar strings? Figure 2.6 shows the response to one
unfamiliar string, the pseudoword LING. BLIRNET has successfully
transferred its experience with strings like LINE and RING to LING.

To quantify the extent to which generalization of this sort occurred,
250 words not in the training set were found that had at least 65% of
their letter clusters among the 540 known to BLIRNET. Presenting
each of these words in a random location on the retina, performance
statistics were computed. The mean activation level of target clusters
was .47, whereas the mean activation of nontarget clusters was only
01. The mean d’ for all clusters contained in the test set was 1.87.
Although performance on this novel set of words is respectable, it is
not as good as performance obtained on the training set. Fortunately,
this decrement in performance is not a basic failing of the model; one
can attribute a large part of the difficulty with unfamiliar strings to the
training regimen. For BLIRNET to learn to recognize a string in terms
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Figure 2.6 The response to LING in location (13,2). (Reprinted with permission from
“Early paralle! processing in reading: A connectionist approach” by M. C. Mozer, in
M. Coltheart, Ed., Attention and performance XII: The psychology of reading, p. 94.
Copyright 1987 by Erlbaum Associates.)
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of its letter clusters, it must learn to recognize each letter cluster
independent of the context in which it is embedded. This is relatively
easy if, during training, each cluster is presented in a variety of con-
texts. If, however, a cluster appears in only a small number of con-
texts, it may be logically impossible to separate the cluster from the
context. Consider an example. Suppose BLIRNET was instructed to
associate the three words HELLO, YELLOW, and ELLIPSE with cluster
unit number 423. (Remember, there is nothing intrinsic to the cluster
unit itself to indicate what conjunction of letters is to be detected.)
That the cluster to be detected is ELL can readily be induced. If given
only the first two words, however, there is no way for BLIRNET to
know whether the target cluster is ELL or LLO or even E_LO. Conse-
quently, the letter-cluster unit that has been /abeled ELL may actually
be detecting some strange combination of the letters E, L, L, and O,
and would respond inappropriately to unfamiliar strings. Suggestions
are presented in section 2.5.3 for overcoming training deficits that
result in such behavior,

To the extent that BLIRNET does learn to identify letter clusters
independent of their context, it is able to recognize arbitrary strings,
even ones containing few familiar clusters, e.g., CTNR. In cases like
this, letter-cluster units denoting the starting and ending letters of the
string become activated, **C, ** T, N_**, R**, and in this particular
example, also *C_N and T_R*, which were clusters known to BLIRNET.
Thus, strings with unfamiliar orthographic structure can be recog-
nized. Because the letter-cluster representation supports position-
specific encodings of only the outermost four letters, orthographically
irregular strings of length five or more can not be faithfully
represented or recognized in their entirety.

2.5.3 Response to Pairs of Words

BLIRNET was designed with the computational goal of being able to
process single words, as well as unfamiliar letter strings, in arbitrary
locations. The preceding results indicate that BLIRNET achieves this
goal. Another goal—again, from a purely computational
perspective—was for BLIRNET to be able to process several words
simultaneously. (The direct psychological evidence that people can
do this is described in section 6.1.1; additionally, chapter 6 provides
indirect evidence by virtue of the fact that MORSEL, which assumes



SIMULATION RESULTS 37

that parallel processing is possible, is able to parsimoniously explain a
vast body of psychological data.)

BLIRNET does a reasonable job of analyzing several words at once.
Figure 2.7 shows the response when two words, ANT and DEN, are
simultaneously presented. To be honest, BLIRNET s performance on
this example is somewhat better than average. As with unfamiliar
strings, the difficulty with multiple words lies partly in the nature of
the training regimen: Because BLIRNET was trained on single words,
it has no experience in recognizing clusters of one word in the context
of other words. Consequently, multiple-word presentations give rise
to novel contexts and are troublesome.

There are several potential solutions to this problem. One is simply
to increase the size of BLIRNET’s training set in the hope that each
cluster will then be seen in a greater number of contexts. A second
solution is to include some training trials in which multiple words are
presented. Perhaps the best solution, however, is to train BLIRNET
with noise added to the background. That is, lay each stimulus word
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Figure 2.7 The response to ANT in location (8,3) and DEN in location (20,3). (Reprint-
ed with permission from "Early parallel processing in reading: A connectionist ap-
proach” by M. C. Mozer, in M. Coltheart, Ed., Aftention and performance XII: The
psychology of reading, p. 95. Copyright 1987 by Erlbaum Associates.)
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down on BLIRNETs retina, and then randomly turn on a small number
of L units in the outlying region. BLIRNET will then have to recog-
nize each cluster in the face of noise. Given this situation, perfor-
mance will be enhanced if BLIRNET learns to ignore all information in
the outlying region—the region in which other words might appear.
Thus, noise can actually focus training on the relevant information and
thereby assist in the recognition of multiple words.

Due to computational limitations, it was impossible to fully imple-
ment any of these solutions. I did, however, carry out a small-scale
investigation of the second solution-—namely, to train BLIRNET on
pairs of words. I selected 44 three- and four-letter words from the ori-
ginal training set and presented pairs of words drawn randomly from
this sample. The words were adjacent to one another on a line,
separated by a three-column gap, with the position chosen at random.
There are 1,892 possible ordered word pairs, and taking the various
retinal positions into account, 28,036 possible visual patterns.

The previously trained network was used, and three thousand addi-
tional training trials were then run using the word pairs. This is a
small number of trials considering the many combinations of words
and positions. In fact, each pair was presented on average only 1.6
times, and only 10.7% of the possible visual patterns were ever
viewed. Further, it was a small enough number of trials that perfor-
mance on single words was nearly unaffected.

There was, however, a dramatic effect on pairs of words. Perfor-
mance was evaluated both before and after word-pair training in the
following manner. One thousand word pairs were randomly generated
and presented to BLIRNET. The measure of performance computed
was the sum squared error—the same measure used to adjust the
weights. Before training, error was 16.8 with a standard deviation of
4.37; after training, it was cut nearly in half, to 9.87 with a standard
deviation of 4.31. (Unfortunately, the weight matrix was deleted
before other, more informative, performance statistics could be com-
puted.) Figure 2.8 shows an example of the outcome of this training
regimen.

2.5.4 Discussion of Simulation Results

Does BLIRNET have the potential of recognizing letter clusters,
independent of their absolute location on the retina and of the context
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Figure 2.8 The response to LATE in location (7,2) and RING in location (21,2) follow-
ing word-pair training. Prior to word-pair training, performance on LATE RING was no
better than on ANT DEN (figure 2.7).

in which they are embedded? The simulation experiments reported
above answer this critical question with a definitive "yes." Thus, the
Lgs activity pattern appears to contain invariant cues for particular
letter clusters, and the learning procedure is able to discover these
cues. Because the activation of one letter-cluster unit does not
directly interact with the activation of another, BLIRNET is likely to
scale well to a larger training set and a more complete set of letter
clusters. The current implementation with only 540 letter-cluster units
should not be seen as restricting the generality of the results.
Nonetheless, in principle there are limitations on the number of
simultaneous words that can be accurately processed. BLIRNET con-
tains nonlinearities that, as discussed in section 2.2, cause interactions
among simultaneously presented words. One clear case of such
interactions can be seen when, for instance, ANT is moved very close
to DEN. The words start to run together: the T_EN unit becomes active
and T** and **D less so. Other effects of the nonlinearities are not
nearly as obvious; two words may be presented and clusters appropri-
ate for an altogether different word may become active. Reducing
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nonlinearities will not solve the problem because doing so decreases
accuracy of letter localization within a word, and hence increases tran-
sposition errors such as **_A or TAN in response to ANT. Thus, the
conflicting demands for linear and nonlinear behavior in the system
place bounds both on how much information may pass through the
system accurately at any time and the localization of individual letters.
I show in chapter 6 that these limitations result in errors that the
human perceptual system also makes.



3 The Pull-Out Network

The output of BLIRNET is difficult to interpret. As a typical example
in figure 3.1a shows, letter-cluster activations are quite noisy. Clus-
ters of the presented word are often not highly active; other clusters
are often activated spuriously. What one would hope for is an activity
pattern such as that depicted in figure 3.1b in which all target clusters
of the presented word have activation levels of 1.0, all nontarget clus-
ters (.0. Although the clusters in figure 3.1a may have several
interpretations, figure 3.1b affords only one.

Interpretation of BLIRNET’s output is also made difficult by the
fact that when several words are presented simultaneously, activations
from one word mask activations from other words. Consider figure
3.2a, which shows the response to a pair of words, CON and MAN. In
the figure, clusters of CON have been superimposed on clusters of
MAN, unlike the figures showing the response to word pairs in chapter
2 in which clusters of the two words were spatially separated. Figure
3.2a is a more realistic depiction of the available information at the
output of BLIRNET, in that letter-cluster units do not explicitly code to
which word they belong and all positional information which might be
used to straighten matters out has been discarded. To see MAN in this
pattern of activity, one must disregard not only spurious clusters but
also the clusters of CON. Interpretation of such outputs would be con-
siderably simplified if the pattern in figure 3.2a could be reduced to
that in figure 3.2b, and perhaps an analogous pattern focusing on CON.

To summarize, when single words are presented it is essential to
clean up the noise—i.e., suppress inconsistent activations and enhance
the consistent; and when multiple words are presented, it is essential
to disentangle activations of one word from another, The process of
cleaning up and disentangling the hodgepodge of activations is
achieved by the pull-out network (henceforth, PO net). Figures 3.1b
and 3.2b are examples of the desired behavior of the PO net.
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Figure 3.1 (a) The response to GRATE in location (10,2); (b) The response one might
have hoped for.
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To frame the job of the PO net more generally, think of the letter-
cluster representation as a memory capable of holding on to several
words at once. The PO net is a mechanism that allows retrieval of
words one at a time from the memory. The fact that the original
representation of each word is noisy poses no additional problem for
the network because retrieval of one word in the presence of others
can be likened to retrieval of one word in the presence of noise. Thus,
the noise-suppression aspect of the PO net is intrinsic to the task,
whether the activations produced by BLIRNET are noisy or not.
Touretzky and Hinton (1985, 1988; Touretzky, 1986) have indepen-
dently developed the notion of a PO net for the purpose of retrieval
from short-term memory, and Hinton and Shallice (1989) have used a
similar clean-up mechanism in their model of deep dyslexia for recov-
ering information in a noisy signal.

3.1 PO Net Design

The PO net is composed of two sets of units (figure 3.3). The PO ner
letter-cluster units (hereafter, PLC units) are in one-to-one correspon-
dence with the letter-cluster units of BLIRNET (hereafter, BLC units)
and represent the orthography or spelling pattern of a word. The
semantic units represent the semantics or meaning of a word. Each
BLC unit excites its corresponding PLC unit, causing the pattern of
letter-cluster activity in BLIRNET to be copied to the PO net. Interac-
tions then take place among the PLC and semantic units to select a set
of letter clusters that together form an internally consistent spelling
pattern, and, if the spelling pattern corresponds to an English word, a
set of semantic features that indicate the meaning of the word.! In the
next two sections, I describe the role that orthographic and semantic
knowledge play in the pull-out process.

3.1.1 The Rotle of Orthographic Knowledge

A pattern of activity over the PLC units is said to be consistent if the
active units exactly correspond to a letter string—that is, if all letter

! In its present form, the PO net has been designed to recover single words and letter
strings, but it would not be difficult 1o modify the network to pull out overlearncd
phrases as unitary entities. More on this in section 3.1.4.
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Figure 3.3 The PO net and its relation to BLIRNET. The PO net is coniposed of two
sets of units: letter-cluster units and semantic units.

clusters of the string are active and no others are. The activity patterns
in figures 3.1b and 3.2b satisfy this definition of consistency. The key
to the PO net’s operation is specifying what makes a set consistent,
which is done in terms of pairwise relations among the letter clusters.
Some pairs are likely to fit together within a single word (e.g., GRA
and RAT), while others are relatively unlikely (e.g., G_AT and E AT).
Generally, one cannot state in absolute terms that a given pair will
either fit or not. For instance, GRA and RAT do not go together in the
word GRADE; and although it happens that no word contains both
G_AT and E_AT, it is conceivable that such a word might exist, ¢.g.,
GRATEWATER. Thus, there are many weak constraints on how the
letter clusters might be assembled to form words. A consistent set of
letter clusters is one that best satisfies these weak constraints, That is,
a set is consistent to the extent that each cluster within the set fits well
with the rest and no cluster outside the set fits well.
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The PO net attempts to discover sets of leiter clusters that, roughly
speaking, maximize consistency. It performs this computation
through simple excitatory and inhibitory interactions among the units.
I now describe the specifics of these interactions,

Two letter clusters are said to be neighbors if they can be aligned so
as to overlap on two letters or delimiters ("#"), not necessarily adja-
cent. Some examples of neighbors are: GRA and RAT {overlap on R
and A), G_AT and E_AT (A and T), RA_E and R_TE (R and E), **G and
*GR (* and G), and T_** and L_** (* and *). Two clusters that both con-
tain delimiters are neighbors only if the matching delimiters
correspond in terms of the relative string position: E#** and A** are
neighbors, whereas E** and #*A are not (delimiters in E** specify the
end of the word, delimiters in **A the beginning); T_** and TE* are
neighbors, whereas T_*# and T_R* are not (if the two Ts are aligned, the
matching delimiters specify different positions relative to the end of
the word). The don’t care symbol ("_") is not counted in determining
overlap; thus, * RA and T_RE are not neighbors, even though they do
share and R.

Two neighbors are said to be compatible if, when aligned, they do
not conflict in any letter position. Some examples of compatible
neighbors are; G_AT and RAT, RAT and ATE, **G and ** R, AT_* and
TE*, Other neighbors are incompatible, such as G_AT and E_AT, GRA
and ERA, **G and **A, T_** and L_**, and TE* and TE_* (remember, " "
implies a nondelimiter).

Based on this classification of compatible and incompatible neigh-
bors, four connection types were allowed.:

1. excitatory—between compatible neighbors.
2. inhibitory—between incompatible neighbors.

3. *-excitatory—a special case of excitatory connection where
both letter clusters contain delimiters and the presence of one
cluster necessitates the presence of another, e.g., *GR implies
#*G and **_R. Note that these connections are not symmetric:
neither #*G nor ** R alone implies *GR. Thus, while the units
are mutually supportive, the connection from *GR to **G is
*-excitatory but the connection in the other direction is merely
excitatory.,

4. *-inhibitory—a special case of inhibitory connection where
both letter clusters contain delimiters, in which case the
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presence of one cluster precludes the presence of the other, e.g.,
*GR and **_E, E** and R**, These connections are symmetric,

The *-excitatory and *-inhibitory connections treat clusters represent-
ing the outermost letters of words apart from clusters representing
mner letters, This is justified on the logical grounds that the outer-
most letters of words are unique. That is, it can be stated unequivo-
cally that a word whose first two letters are GR must have G as its first
letter, or that a word ending in E cannot also end in R. No such asser-
tions can be made conceming inner letters: a word containing the
string RAT may or may not also contain ATE. Some of the connections
involving the clusters of GRATE are shown in table 3.1.

Each connection type has a different weight associated with it. The
excitatory connections must have positive weights, inhibitory nega-
tive. The *-connections should have weights of a greater magnitude.
I determined the magnitudes of the weights, as well as other parame-
ters of the PO net, by informal experimentation. My objective was to
find values that yielded fairly stable behavior regardless of the length
of the word being processed. Fortunately, the qualitative behavior of
the PO net is relatively insensitive to the precise weight values. The
weights for the connections between PLC units are listed in the first
four lines of table 3.2. In rare circumstances, multiple connections are
possible between clusters. For example, LEE and LLE can be viewed as
inhibifory if the L of LEE is aligned with the first L of LLE but excita-
tory if aligned with the second L. The net connection strength used in
such cases was simply the sum of the individual connection strengths.

Table 3.2 PO Net Connection Strengths

Connection Type Value
PLC-to-PLC excitatory 06
PLC-to-PLC inhibitory -.18
PLC-to-PLC *-excitatory 24
PLC-to-PLC *-inhibitory 24
PLC-to-semlex excitatory A0
semlex-to-PLC excitatory A0
semlex-to-PLC inhibitory -.001
semlex-to-semlex inhibitory -.05
feedforward (g ) .0005
global suppression (g ) -.14
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Tabte 3.1 Counections to Selected Units for GRATE Example

Uni Connection Type
nit . PR : PRI
excitatory inhibitory *-excitatory *-inhibitory
**3 €% R k% p A% T *GR O*G A EEp FD R
*% R KEG ARA 3GR * RA * RE K% 4 A% T 4 ER
*G A *HG *GR *_RA GRA %% * RE *_ER *T_R
G_AT
GRA *GRO*G A * RA ERA
G_AT RAT RA_E
G_AT *G_A GRA RAT ATE E_AT
AT *
RAT * RA  GRA G_AT
Ra_E R TE ATE
AT_* ERA E_AT
R TE RAT RA_E ATE TE* A_TE
TE_* TER
AT * G_AT RAT  ATE E_** L_** TE_* LE*
A_E* TE* T_#* T_R* N_E*
E_AT
A _E* RA_E ATE AT_* TE * T R* N_E*
TE* E** LE*
TE* R_TE ATE AT * TER B_** L_** TE_* LE*
A _E* T Ak BA¥ T_R*
A TE N_E*
T k% E*# AT_* TB* E_** L_** TE_* LE*
Ex% T k% E ** f %% A_E* TE* LEY T_R*
n_E*
E *% BE* TE * AT * TE* T_** L **
LE*
kh A KA AR Kk R OAGR * RA ** O
- *_RE *_ER
*RR £% T k* B A% T %G *GR *G A AT R
TE * R_TE ATE ®_*¥ AT _* A E* TE* T *#
TER T_R* B_TE L_** LE* N_E*
* RE *4_R AGR T_RE *G_A *_RR K*_p k4 T
*_ER *T_R
AN_E A_TE W_E*
T_R* TE _* TER T_RE AT_* A _E* TE* E**
LE* N_E*
A_TE ATE TE* TE_* TER R_TE
AN B
N _E* TE* E** LE* AN_E AT_* A _E* TE * T_R*
T _RE TER *T_R *_RE T_R*
E_AT RAT ATE AT * ERA G AT
*T R TER *_ER T_RE #%G - AGR *G A * RA
- *%p * RE
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3.1.2 The Role of Semantic Knowledge

The connections among PLC units embody knowledge about which
pairs of clusters can appear together in a well-formed letter string. An
additional source of information can assist the PO net selection pro-
cess: higher-order knowledge about valid English words. Some form
of lexical or semantic knowledge certainly plays a role in reading, as
abundant evidence suggests that lexical status has a significant effect
on performance (e.g., Carr, Davidson, & Hawkins, 1978; McClelland
& Johnston, 1977).

As shown in figure 3.3, the PLC and semantic units are intercon-
nected. Activation flows from the BLC units to the PLC units to the
semantic units. The semantic units then feed back upon the PLC units
and help to support sets of PLC units that form meaningful entities.
The role of semantic units is easiest to envision if word meanings are
represented locally, that is, by a single semantic unit. For instance,
suppose a particular semantic unit represented the "to annoy or irri-
tate” sense of GRATE. It would be connected to all clusters of GRATE.
Activation of some clusters of GRATE would result in activation of the
"annoy/irritate” semantic unit, which in turn would reinforce these
clusters and help activate the remaining ones, Inhibitory interactions
among the semantic units are also necessary to prevent multiple mean-
ings from remaining simultaneously active,

For obvious reasons, a localist representation of meaning is
undesirable, but because the mapping between words and meanings is
arbitrary (any letter string can be assigned any meaning), it is not clear
that a distributed representation of meaning will work. It seems diffi-
cult to conceive of a systematic mapping between a distributed
representation of orthography—the letter clusters—and a distributed
representation of meaning—a set of semantic features, Why should,
say, a word starting with the letters BR be associated with particular
semantic features? One argument in favor of such relationships can be
made based on Lewis Carroll’s Jabberwocky, which contains non-
sense words such as BRILLIG that nonetheless have semantic connota-
tions: BRILLIG is reminiscent of other words that begin with BR such
as BRIGHT, BRILLIANT, and BREEZY. Simulation studies have also
demonstrated that arbitrary associations can be formed between distri-
buted orthographic and semantic representations (Hinton, McClelland,
& Rumelhart, 1986; Hinton & Shallice, 1989; Miikkulainen, 1990).
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The semantic units perform two critical computational functions.
First, because all PLC-unit interactions are pairwise, the semantic units
are necessary to provide a higher-order linking of the letter clusters.
This linking helps clusters of a word to cohere. Indeed, although the
PO net works fairly well without semantic units, it has the tendency to
blend together clusters of different words. Second, the semantic units
allow semantic access to be performed within the PO net. Semantic
representations are clearly needed by higher-order processes.

On grounds of parsimony, I suggest that an explicit lexical
representation is not necessary: the semantic representation obviates
the need for a lexicon in the pull-out process; direct association
between orthographic and semantic knowledge is possible without
mediation by a lexicon; and the semantic representation is required in
any case to represent word meanings. A lexicon is useful in that it
affords a simple means of determining the lexical status of a letter
string—-an ability required in many psychological studies. However,
fexical status can in principle be ascertained by examining the activity
pattern over the semantic units: What really makes a word a word, as
opposed to an orthographically regular string, is that it has a meaning
associated with its spelling pattern.

Having spoken to the virtues of a true semantic representation, I
must admit to the difficulty of devising a complete semantic feature
set. To do so by hand would be unwieldy. I am presently engaged in
a project, in collaboration with Phillip Wong, aimed at discovering a
rich set of semantic features using unsupervised connectionist learning
procedures and an electronic thesaurus. 2 However, in the curreat
implementation of MORSEL, I have resorted to a bit of a cheat in the
semantic representation: Associated with each word is a distinct pool
of units that collectively represents all meanings of the word. These
units are not shared by different words. While one might generously
view this as a semi-distributed semantic representation (Smolensky,

2 Fodor and Pylyshyn {1988}, among others, have argued that connectionist models
cannot adequately represent meaning because the full range of semantic possibilities
cannot be expressed by a linear set of semantic features, Whether or not this argu-
ment applies at the level of individual word meanings, Pollack (1988) and Smolensky
(1990) have conclusively demonstrated that distributed connectionist representations
can encede complex hierarchical structures of the sort that Fodor and Pylyshyn
demand.
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1990), it is essentially a distributed lexical representation because the
semantic features are not shared by different words with similar mean-
ings. While it would be dishonest to continue calling this a semantic
representation, the term “lexical” violates the spirit of the theoretical
model. T therefore take the liberty of referring to these units as semlex
units, because they have both semantic properties (in theory) and lexi-
cal properties (in the implementation). I emphasize that this semlex
representation is used only as an implementational convenience; in
principle, I see no reason why a fully distributed semantic representa-
tion would not work just as well,

The number of semlex units associated with each word in
MORSEL’s lexicon was twice the number of letters in the word. Each
of these units was connected to five randomly selected letter clusters
of the word, with the restriction that all letter clusters had approxi-
mately the same number of semlex connections. Because the number
of letter clusters in an /-letter word is 3/42 and the total number of
semlex-PL.C unit connections is 10/ (2] units/fword times 3
connections/unit) each PLC unit associated with a word is connected
on average to slightly over three of the word’s semlex units. This par-
ticular scheme was selected because it made the PO net fairly neutral
with regard to word length; there was no bias toward either shorter or
longer words.

As summarized in table 3.2, the connections between PLC and sem-
lex units are symmetric and excitatory. In addition, each semlex unit
slightly inhibits all PLC units to which it is not connected. Semlex
units also inhibit all semlex units that are associated with different
words. It is this inhibition that forces the PO net to select a pattern of
activity in the semlex units corresponding to a single word.

The semlex units are crucial to the pull-out process because they
impose a higher-order organization on the letter clusters. Without
semlex units, all interactions among letter clusters are pairwise and
local; that is, a letter cluster such as GRA can support only with its
neighbors, e.g., *GR and G _AT. Semlex unmits allow higher-order
interactions—between sets of 5 letter clusters—and interactions
between nonadjacent clusters. Via the semlex units, GRA can support
clusters at the other end of the word, e.g., E*+, Without semlex units,
the PO net occasionally produces blend errors in which the first part
of one word is blended together with the second part of another
{Mozer, 1987).
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3.1.3 System Dynamics

Initially, the PLC units receive feedforward excitation from the BLC
units. Interactions then take place within the PO net, which gradually
iterates toward a stable state. PO net units {both PLC and semlex
units) have the same dynamical properties as units in McClelland and
Rumelhart’s (1981) interactive-activation model. Units are
continuous-valued in the range [-0.2,1.0]. Information coming in to
cach unit is summed algebraically, weighted by the connection
strengths, to yield a net input:

_ 6 =
nety = 3, wyp; +Opb +0gp
je
ACTIVE

where ACTIVE is the set of all PO net units with positive activity at the
current time, Wi is the strength of connection to PO unit { from PO
unit j, p; is the activity of PO unit j, b S—following the notation of
chapter 2—is the activity of BLC unit i (if / is a semlex unit, then b;5
is zero), and o is the strength of feedforward connections from BLIR-
NET to the PO net. The final term, g p, applies only to the PLC units
and is explained below.

The activation value of each PO unit is updated by the net input
according to the rule:

net; [1.0 — p; ] if net; >0
Ap; = net; [p; — (—0.2)] otherwise.

If the net input is positive, activation is pushed toward the maximum
value of 1.0; if negative, activation is pushed toward the minimum
value of —(0.2. The effect of the net input is scaled down as the unit
approaches its maximum or minimum activation level,

The dynamics as described thus far are inadequate, for the follow-
ing reason. Many letter clusters compete and cooperate directly with
one another, in particular, the clusters representing ends of words and
the clusters sharing letters. Often, however, these interactions are not
enough. For instance, suppose two words are presented, LINE and
FACT, and that clusters of LINE are more active initially. Clusters like
**F and CT* of FACT experience direct competition from the
corresponding clusters of LINE, and are therefore suppressed, but the
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inner clusters of FACT such as FAC and F_CT do not. The pull-out pro-
cess thus yiclds LINE along with the inner clusters of FACT. To get
around this problem, some type of global inhibition is useful.

Two possibilities are immediately apparent. The first, which I'll
call the decay scheme, is that the activity level of each PLC unit could
decay over time without external input. The second possibility, the
fotal inhibition scheme, is that each unit could be inhibited in propor-
tion fo the total activity in the network; this type of global inhibition
can be implemented by small-weighted inhibitory connections
between every pair of units, Neither scheme is appropriate, however.
With the decay scheme, a unit reaches equilibrium when its net input
exactly compensates for the decay. Generally, this stable state is not
at the limits of the activity range, —.2 or I, but can be at any inter-
mediate value. Such intermediate values are not acceptable because
the PO net’s task is to reach a binary yes or no decision concerning
each letter cluster. The total inhibition scheme does reach a binary
decision, but the total size of the final activity pattern is predetermined
by the magnitude of the inhibition. Increasing the inhibition decreases
the number of active units that the network can support, and vice
versa. This is undesirable because the PO net must allow patterns of
arbitrary size. That is, a single stable coalition should win out,
independent of the number of units in the coalition: BLACK and
BLACKBOARD are both plausible pull-out candidates.

I opted for a different global-inhibition mechanism, which I cail the
average inhibition scheme. The idea is to inhibit each PLC unit in pro-
portion to the average activity of all clusters above threshold, which
can be computed as follows:

{
|ACTIVE |

Z Pi»
ie
ACTIVE,,

ﬁ:

where ACTIVE;, is the set of all PLC units with positive activity at the
current time. The equation for net; incorporates this term, weighted
by the parameter ;. This scheme allows the set of PL.C units whose
activity grows the fastest to shut off the other units. Activity grows
fastest for units that have many active compatible neighbors, In the
LINE FACT example, clusters like FAC and F_CT have relatively few
such neighbors (because neighbors like *FA and CT* have been
suppressed through direct competition with LINE), and as a result will
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ultimately lose out. The average inhibition scheme does have the
drawback that although the formal specification of the computation is
simple it requires somewhat sophisticated connectionist hardware,
specifically, a unit that can count the number of inputs above thres-
hold and rescale the sum of the inputs by this count.

3.1.4 Comments on the Design

Tt is useful to examine how the PO net is related to other relaxation
networks. Consider first a winner-take-all (WTA) network (Feldman
& Ballard, 1982; Grossberg, 1976). A WTA network has the property
that only the unit with highest initial activity level among a set of con-
tenders has a final activity level above zero. For instance, the word
level of the interactive-activation model is such a network. Every
word competes with every other word, so that in the final state, only
one word remains active, The PO net can be viewed as a distributed
WTA network. It performs a function exactly equivalent to the word
level of the interactive-activation model but operating on distributed
instead of local representations: the pattern of activity representing
one word suppresses the pattern of activity representing another,
instead of the single unit representing one word suppressing the unit
representing another. Although building a localist WTA network is
trivial, a distributed WTA is quite complex because of potential over-
lap among patterns and variation in pattern size.®

The PO net is related to another type of relaxation network, a com-
pletion network (Smolensky, 1986), so named because it completes or
fills in missing information from a pattern. Completion networks,
once trained on a set of patterns, are able to reconstruct a known pat-
tern given a partial or inaccurate description. In a sense, this is what
the PO net does in finding the word closest to the jumble of letter-
cluster activations. The PO net differs from the standard conception of
a completion network in one important respect, however: it performs
general, not specific, completions. The PO net operates based on the
formal properties of the class of allowed patterns—which clusters are
compatible and incompatible neighbors—not on knowledge of partic-
utar patterns.

3 For other issues related to distributed WTA networks, see Touretzky (1989),
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Like other completion networks, the PO net could have its connec-
tions trained through experience. One might note that the handcrafted
connections I've constructed represent essentially second order statis-
tics of letter cluster co-occurrence in words, and this is exactly the sort
of information that Hebbian learning can pick up. Thus, there is litile
doubt that training the PO net would be at least as successful as hand-
crafted connections.

3.2 Simulation Results

Simulating a PO net with even a relatively modest number of letter-
cluster units is an expensive proposition due to O(#?) connections in
the network. To reduce the computational burden, simulations were
run on only a subset of the letter-cluster units, the units that could
plausibly play a role in a given situation. In other words, a mini PO
net was constructed for each example that will be presented. Gen-
erally, these nets consisted of all target clusters as well as any spurious
clusters whose BLC unit activity was above .05 (i.e., all clusters that
appear in figures 3.1 and 3.2). It seems unlikely that other clusters
could become sufficiently active to influence the results.

3.2.1 Cleaning up Noise in a Single Word

The operation of the puil-out net can be seen in figure 3.4. The top
frame indicates the activity of the BLC vnits. The shading of a unit’s
name is proportional io its activity, black corresponding to a high
level of activity and the light stippled pattern to a low level. The top
frame is an alternative presentation of the information in figure 3.1a.
The frames below indicate the activity of the PLC units after every ten
iterations.

Initially, activity levels of the PLC units are reset to zero, Qver
time, activation trickles from the BLC units to the PLC units and
interactions take place within the PO net. To demonstrate the power
of letter-cluster competition and cooperation in the PO net, semlex
units were not used in this example. Further, BLC unit G_AT was
turned off (see fourth row, sixth column of top frame) and in its place
E_AT was fully activated (third row, fourth column of top frame). The
PO net is able to correct for these faulty activations: by iteration 4Q,
E_AT and all spurious activations have been extinguished and G_AT
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Figure 3.4 Pull out of GRATE. Note the activity of BLC units G_AT and E_AT.

and all target activations reinstated. Examination of neighborhood
relations sheds light on the net’s success. G_AT has five compatible
neighbors—G_AT, GRA, RAT, ATE, and AT_*—while E_AT has only
four—RAT, ATE, AT_*, and ERA—one of which is a spurious activation
itself. G_AT’s gang is larger than E_AT’s, allowing G_AT to win out.
Figure 3.5 illustrates the PO net’s operation for another example,
LINE. To simulate a case of severe noise, all BLC units having two
letters in common with LINE were activated with value 0.5, and all
BLC units of LINE with value 1.0. Gaussian noise with mean zero and
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Figure 3.5 Pull out of LINE,

standard deviation 0.1 was then added to each activity level. Semlex
units were not included in this simulation. Although the clusters of
LINE are most active, they are masked by a large number of small
gangs (e.g., *BI, *B_N, BIN, B_NE, BL_E}. Nonetheless, the PO net is
able to select every cluster of LINE to the exclusion of all others.
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3.2.2 Disentangling Activations from Two Words

Figure 3.6 shows the pull out of CON from the set of clusters activated
by BLIRNET in response to CON MAN. (These clusters are presented
graphically in figure 3.2a.) The PO net must suppress not only spuri-
ous activations such as TE* but all clusters of MAN. Semlex units for
the two stimulus words, CON and MAN, were included in the simula-
tion, as well as several alternative responses that could be formed
from the active letter clusters: TON, CAN, ATE, TEN, ONE, FON, and

N* MAN *MA &M AN O™ YN CAN O
‘CO O * AN*  CON * TE* A EN* * ON
T *MN * A TO* OMA OFE AT TON 1
MN* *AN ON* =0 *TO *C N
BLIRNET

) PO net, itef&tion 15

l'ic 0 W
R *C_N
PO net, iteration 20
ﬁirc o ik *h 0

CON

* ON

“PO net, iteration 25

Figure 3.6 Pull out of CON from CON MAN. Only the letter-cluster units are depicted.
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TOE. CON wins the competition in the semlex units as well as in the
PLC units. This is shown in figure 3.7. Due to letter cluster overlap,
several semlex units become active initially. In particular, note the
CAN and ION units at iteration 15; they are nearly as active as the CON
units, However, the PO net suppresses these activities and CON comes
to dominate.

For this pattern of BLC activity, CON is selected. The PO net can
select MAN if noise is added to the BLC activations, or if the semlex or
PLC units of MAN are preactivated. In figure 3.8, I set the inifial
activity of PLC unit **M to .0!; the effect of this slight boost can be
seen over time as ##*M leads the activity in the PO net, resulting in the
ultimate selection of the letter clusters of MAN. The semlex units of
MAN also win their competition. I discuss further how selection
among multiple stimuli can be biased in section 3.3.

Figure 3.9 presents a further example in which two longer words,
CHURCH and STATION are disentangled. In this example, the input to
the PO net was determined not by presenting CHURCH STATION to
BLIRNET and observing the resulting pattern of BLC activity, but by
bypassing BLIRNET altogether and directly activating all BLC units
appropriate to either word, and then injecting Gaussian noise. This
noise allowed the PO net to select CHURCH on some trials and STA-
TION on others.

3.3 Influences on the Puli-Out Process

When multiple words are present in the BLC representation, the PO net
must select one. In the CHURCH STATION simulation and others
reported in chapter 6, I have simply injected noise into the system so
that a word is chosen at random. 1 do not wish to suggest that this
noise is intrinsic to the system. Rather, the noise substitutes for hith-
erto unspecified factors. In the following sections, I elaborate on
several factors that can influence pull out. These factors are of three
varieties: representational biases, bottom-up biases, and top-down
biases.

3.3.1 Representational Biases

BLIRNET’s oufput layer contains only a subset of the possible letter
clusters. Conseguently, some words are bound to have a greater
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Figure 3.7 Pull out of CON from CON MAN. Only the semlex units are depicted. Each
word included in the simulation is represented by six semlex units, numbered 1-6.
The words are written in lower case to distinguish them from letter-cluster units.
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Figure 3.8 Pull out of MAN from CON MAN, In this example, PLC unit **M has been
preactivated to a level of 0.01.

proportion of their clusters among the BLC units than others. The
better a word is represented, the better it is expected to fare in the PO
net competition. If a single cluster is missing, up to eight other clus-
ters will lose a compatible neighbor, and the number of compatible
neighbors is a critical factor in determining whether a given cluster
will survive the competition. The G_AT/E AT example (figure 3.4)
attests to this point.
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Figure 3.9 Pull out of CHURCH from CHURCH STATION.

The significant effect of missing clusters is surprising because on
first glance, the letter-cluster encoding appears highly redundant; it
does not seem that clusters like G_AT add much to the representation
of GRATE given a multitude of clusters like GRA, RAT, and GR_T.
Nonetheless, such redundancy is observed to be clearly beneficial in
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the pull-out process. Words that will benefit the most are those hav-
ing the highest proportion of their clusters present; as a general rule,
these will be the most orthographically regular words.

Regularity of a different sort might be important too—letter-cluster
frequency. If frequent activation caused units to have higher resting
activation levels (McClelland & Rumelhart 1981) or lower thresholds,
high-frequency clusters would respond the quickest and words con-
taining these clusters would tend to be pulled out first. Further, if con-
nections between units were strengthened based on frequency of use,
the PO net would recognize highly familiar words faster and with
greater ease.

3.3.2 Bottom-Up Biases

Pull out is strongly influenced by the activity levels of the BLC units,
whose activity levels in turn are dependent on the operation of BLIR-
NET. Because of inaccuracies in BLIRNET, some clusters will not
receive the activation they deserve, and other spurious clusters will
receive undue activation; both sorts of error interfere with the pull-owt
process. In general, if multiple words are presented, the PO net will
select the word having the highest signal strength, This is illustrated
in the CHURCH STATION example: In figure 3.9, several critical clus-
ters of STATION—+**S, *ST, * TA—have degraded activity, causing
CHURCH to be pulled out.

In chapter 4, T present an attentional mechanism that is capable of
raising the relative signal strength of attended items. Basically, if
attention is focused on a particular word, letter clusters of that word
will have greater activations than letter clusters of other words, and
the attended word will tend to win the PO net competition.

3.3.3 Top-Down Biases

In addition to assisting the pull-out process by imposing a higher-
order structure on the letter clusters, the semlex units have further
implications for the pull-out process. The highlights are as follows.

s The PO net is biased toward legitimate words over orthographi-
cally regular strings that do not have associated meanings
(pseudowords) because the lexical or semantic information
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helps clusters of a legitimate word to cohere. Further, if the
overall strength of the PLC-semlex unit pathway were externally
modulated, the influence of word knowledge could be varied.
With the pathway enhanced, the PO net would tend to turn pseu-
dowords into words; with the pathway attenuated, the PO net
would be indiscriminate as to the word status of a string. Peo-
ple appear to have such control over word-level knowledge:
The tendency to misperceive briefly presented pseudowords as
words containing similar letters (e.g., reading LERE as LORE) is
strongly influenced by expectations as to the nature of the
stimuli (McClelland & Mozer, 1986).

e By preactivating or priming semlex units prior to pull out, pull

out could be biased in favor of words with certain meanings. In
this respect, semlex units act as a top-down influence on pull
out.

e The PO net as constructed reads out single words at a time,

where a word is defined as a string of letters delimited by blank
space. It scems desirable, however, for the PO net to operate on
larger units of text if they form a semantically meaningful
whole. This might happen if, through experience, a phrase took
on a unitary meaning. This meaning, represented in the semlex
units, could help to hold together words of the phrase and over-
come the inhibition resulting from multiple words, thereby
allowing all words in the phrase to be pulled out at once. In this
sense, semlex units help to "chunk" letters on a page, and
experience allows the construction of larger and larger chunks,
as has been suggested for more abstract units of knowledge
(Rosenbloom & Newell, 1987). This is a radical proposal in
that it could give the PO net responsibility for parsing syntactic
elements such as idioms and noun phrases, and suggests that
such parsing may be facilitated by the system’s ability to pro-
cess multiple words in parallel.



4 The Attentional Mechanism

People deal with only a small fraction of the visual information in
their midst at any instant. Consider the task of reading aloud: dozens
of words strike the retina simultaneously, yet the reader can vocalize
no more than one word at a time. To perform this task, the processing
system requires the ability to access visual information selectively and
sequentially. This is the primary function of an attentional mechan-
ism: to control the amount and the temporal order of information pass-
ing through the system.

What might such a mechanism look like in the context of MOR-
SEL? T propose a simple mechanism, one that directs a "spotlight” to
a particular region of the retina (e.g., Eriksen & Hoffman, 1973; Koch
& Ullman, 1985; Laberge & Brown, 1989; Posner, 1980; Posner,
Snyder, & Davidson, 1980}, enhancing the relative value of stimulus
information falling within that region. | More concretely, the atten-
tional spotlight serves to highlight low-level featural activations aris-
ing from the attended region. As these activations propagate through
BLIRNET they maintain their relative status, so that BLIRNET units
appropriate for the attended item(s) will tend to become most active as
well, Consequently, these letter-cluster units will dominate the PO net
competition, causing the attended item(s) to be pulled out. In this
way, the attentional mechanism allows preferential processing of
attended stimuli.

The attentional mechanism (AM) serves four distinct functions in
MORSEL, suggesting the following roles of selective attention in
visual information processing.

e Controlling order of readout. The AM allows MORSEL to
selectively access information in the visual field by location.

{ Crick {1984) has suggested that just such a mechanism resides in the reticular com-
plex of the thalarmus, although more recent neurophysiological data (Moran & Desi-
mone, 1985) casts doubt on this theory.
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® Reducing crosstalk. As discussed in chapter 2, when multiple
words are analyzed simultaneously by BLIRNET, interactions
within the network cause the processing of one word to interfere
with another. Even if this form of crosstalk were not a serious
problem, processing multiple words can be difficult because the
resulting pattern of letter-cluster activity may be such a jumble
that the PO net cannot unambiguously reconstruct the original
stimuli. By focusing attention on one word at a time, crosstalk
can be eliminated,

o Recovering location information. Remember that the output of
BLIRNET—the letter-cluster representation—encodes the iden-
tity of a letter or word but not its retinal location; the operation
of BLIRNET and the other modules factor out location informa-
tion. However, because the current focus of attention reflects
the spatial source of ietter-cluster activations, the AM can con-
vey the lost location information. This is discussed further in
chapter 5.

e Coordinating processing performed by independent modules.
Each processing subsystem operates independently of the oth-
ers. Consequently, it is imperative to ensure that the results
from the various modules are grouped appropriately. The AM
allows this by guiding processing resources of all modules to
the same spatial region. This function of attention seems analo-
gous to that suggested by feature-integration theory (Treisman
& Gelade, 1980; Treisman & Gormican, 1988). Chapter 5 ela-
borates on this point.

4.1 Implementation
4.1.1 The AM as a Filter

The AM, sketched in figure 4.1, is a set of units arranged in a retinoto-
pic map in one-to-one correspondence with the L units of BLIRNET.
Activity in an AM unit indicates that attention is focused on the
corresponding retinal location and serves to gate the flow of activity
from L | to L,. To be concrete,

L bfy  with probability &+(1-E)a,,
Fxy 0 otherwise,



IMPLEMENTATION 67

@
Higher Levels ®
of Cognition )

90 0 0 0 0 ©

Q

40
ccooooooooooo
Attentional Mechanism CC 0 00C00O0O0O0O0OO0O0
dlo o cooooo0o0o0 ol
4 Hdlo o c oo 000000
00000000 00

BLIRNET

Figure 4.1 The AM and its relationship to BLIRNET. Layers 1 and 2 of BLIRNET (L,
and L,) are shown, The third array of units is the AM. As described in the fext, AM
units receive input from L, of BLIRNET and higher levels of cognition (the connec-
tions with arrowheads). The AM units gate the flow of activity from L to L, (the tri-
angle junction indicates such a gate). Finally, higher levels of cognition can gate the
flow of activity from L, to the AM. (Reprinted with permission from "A connectionist
model of selective attention in visual perception” by M. C. Mozer, in Proceedings of
the Tenth Annual Conference of the Cognitive Science Society, p. 196. Copyright
1988 by Erlbaum Associates.)

where b/, is the actual activity level of the L unit in location (x.y)
of feature type f, bffo, is the level transmitted to L, a,, is the activity
level of AM unit in location (x,y) and has range [0,1], and & is a scal-
ing parameter with a value of approximately .25. As long as § is
greater than zero, the AM serves only to bias processing; it does not
absolutely inhibit activations from unattended regions (similar to the
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Figure 4.2 Mean ratio of target activation to the maximum spurious activation for X,
H, and F presented in location {14,2) as a function of transmission probability. (Re-
printed with permission from "A connectionist model of selective attention in visual
perception” by M. C. Mozer, in Proceedings of the Tenth Annual Conference of the
Cognitive Science Society, p. 197. Copyright 1988 by Erlbaum Asscciates.)

model of Norman and Shallice, 1985). I call EH(1-E)a,, the transmis-
sion probability.

As one might expect, highly familiar stimuli outside the focus of
attention can work their way through the system better than other
stimuli. To illustrate this point, the version of BLIRNET trained to
recognize individual letters (section 2.4.2) was tested midway through
training. Some letters were recognized better than others: X was
detected in every location and in the context of virtually any other
simultaneously presented letters, H was less consistently detected, and
F even less so.” Taking stability of detection to be an indication of
familiarity, one might predict that performance on X should suffer less
than performance on H, and H less than F, when attention is removed.
This prediction is borne out in figure 4.2. Performance here is

2 The difference in performance is most likely a quirk of the initial random weights in
BLIRNET. A replication of the simulation could confirm this, or it might indicate the
alternative that some letters are intrinsically easier to recognize due to their physical
distinctiveness.
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measured as the ratio of the activation level of the target cluster (*X*,
*H*, or *F*) to the activation level of the maximally active spurious
cluster, averaged over thirty presentations of the target letter. When
this ratio falls below 1.0, the target cannot be discriminated from the
nontargets. X is discriminable as long as the transmission probability
is greater than .1, H .3 and F .8. Thus, BLIRNET is able to recognize
familiar stimuli based on fewer perceptual features than less familiar
stimuli, If this result is typical, it would appear that focal attention is
less critical for highly familiar stimuli, Although this property is
uniikely to distinguish MORSEL from other theories of attention, it is
reassuring to verify that the computational model does indeed behave
as expected. The observed behavior is not logically necessary: The
model might well have produced a nonmonotonic decline in perfor-
mance as the transmission probability was decreased, or the perfor-
mance on X might have dropped so rapidly that H or F fared better at
low transmission probabilities,

To further illustrate the filtering properties of the AM, BLIRNET
was tested on two letters~L and G—presented simultaneously. Fig-
ure 4.3 shows the strength of response to the two letlers, relative to the
strength of alternate responses, with the transmission probability of L
fixed at 1.0 and the transmission probability of G varying from 0.0 to
1.0. At the right edge of the graph, when attention is fully divided, the
L response is weak compared to the G response. The reason for this is
some combination of factors, including the current level of training,
the initial random weights in BLIRNET, and the particular presentation
positions used. The exact reason is unimportant; what matters for this
example is that by concentrating attention on L, its relatively weak
response can be improved dramatically, although this improvement is
matched by a corresponding decrement in the response to . Thus,
inter-item crosstalk is reduced by focusing attention on one item.”

4.1.2 System Dynamics

In the previous section, I described the way that a given AM state
influences processing in MORSEL. In this section, I turn to the issue

3 Unlike when single letters are presented, the target:spurious activity ratio is not an
absolute measure of discriminability here. This is because there are two stimuli, so
what matters for recognition are the rwo most active units. Even if a target has a ratio
less than cne, it may still be the second most active unit.
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location (11,2} and G in location {20,2) as a function of attention to the G, averaged
over thirty trials. The transmission probability of the L was held constant at 1.0. (Re-
printed with permission from "A connectionist model of selective attention in visual
perception” by M. C. Mozer, in Proceedings of the Tenth Annual Conference of the
Cognitive Science Society, p. 197. Copyright 1988 by Erlbaum Associates.)

of how this state is computed. 1 begin by assuming external sources
of knowledge are available that offer suggestions about where to
focus. Sometimes these suggestions will conflict with one another;
the task of the AM is to resolve such conflicts and construct an atten-
tional spotlight that highlights a single item appearing on MORSEL’s
retina. Defining an item to be a set of features in close proximity, the
spotlight should form a contiguous region on the retina.

In connectionist modeling, the standard method of transforming
this description of the target behavior of the AM into a network archi-
tecture is to view the AM’s task as an optimization problem: to what
activity value should each unit in the AM be set in order to best satisfy
a number of possibly conflicting constraints? The two primary con-
straints here are that the AM should focus on locations suggested by
the external knowledge sources, and the AM should focus on a single
item.

The first step in tackling such an optimization problem is to define
a Harmony function (Hopfield, 1982; Smolensky, 1986) that computes
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the goodness of a particular AM state, i.c., a pattern of activity over
the AM units. This goodness is a scalar quantity indicating how well
the AM state satisfies the optimization problem. The maxima of the
Harmony function cotrespond to desired states of the AM. Given a
Harmony function, /7, one can ask how the activity of the AM unit at a
retinal location (x,y), denoted @y, should be updated over time to
increase Harmony and eventually reach states of maximal Harmony.
The simplest rule, called steepest ascent, is to update a,, in proportion
to the derivative dH /da,,. If dH /da,, is positive, then increasing dyy
will increase ; thus a,, should be increased. If dH /Baxy is negative,
then decreasing a,, will increase H'; thus a,, should be decreased.

Returning to the problem faced by the AM, devising a Harmony
function that computes whether the pattern of activity is contiguous is
quite difficult. Instead of constructing a function that explicitly
rewards contiguity, I have combined several heuristics that together
generally achieve convex, contiguous patterns of activity. The Har-
mony function incorporating these heuristics is:

_ M 2
H = Z ext_\-‘.,,a_‘.y — ‘Z Z Z (a,-J,- ~aly)
(x,y) (x.py (e
eALL cALL NEIGH,

0 _
+E— E (va _a.\jy)2 »

(v,y)e

ACTIVE
where ALL is the set of all retinal locations, exty, is the net external
input to the AM at location (x,y), NEIGH ., is the set of 8 locations
immediately adjacent to (x,y)—the neighbors, ACTIVE is the set of
locations of all units with positive activity, @ is the mean activity of
ali units with positive activity—

1

|ACTIVE | Do
{x.y)e
ACTIVE

a =

and |1, 8, and 7 are constants.

The first term encourages each unit to be consistent with the exter-
nal bias. The second term encourages each unit to be as close as pos-
sible to its neighbors; if a unit is off and the neighbors are on, the unit
will tend to turn on, and vice versa. The third term encourages units
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below the mean activity in the network to shut off, and units above the
mean activity to turn on. The constant y serves as a discounting fac-
tor: with vy less than 1, units need not be quite as active as the mean in
order to be supported. Instead of using the average activity over all
units, it is necessary to compute the average over the active units.
Otherwise, the effect of the third term is to limit the total activity in
the network, i.e., the number of units that can turn on at once, This is
not suitable because small or large spotlights should be allowed,
depending on the nature of the external input. The same scheme was
used to limit activity in the PO net, as described in chapter 3.
The update rule for a,, is:
Aa,, = = exty, +I1 Y, (@ —ay) — 0(ya—ay).

(i,jle
NEIGH,,

ol
da o

Further, a,, is prevented from going outside the range [0,1] by thres-
holding activity at these limits. YA neighbor is assumed to have
activity level zero if it is outside the 36 x 6 retinotopic map.

To explain the activation function intuitively, consider the time
course of activation. Initially, the activity of all AM units is reset to
zero, Activation then feeds into each unit in proportion to its external
bias (first term in the activation function). Units with active neighbors
will grow the fastest because of neighborhood support (second term).
As activity progresses, high-support neighborhoods will have activity
above the mean; they will therefore be pushed even higher, while
low-support neighborhoods will experience the opposite tendency
(third term).

In all simulations, p was fixed at .125, 6 at .5, and yat .11 times the
total external input with minimum and maximum values of .75 and
1.0, respectively. These constants were selected on the basis of infor-
mal experimentation. Other parameter settings and Harmony func-
tions would suffice equally well as, if not better than, the ones chosen.
In fact, I tested several variations of the Harmony function, and the
qualitative system behavior was unaffected. Nonetheless, the

4 To follow the objective function exactly, the third term should actually be zero if a,,
is currently inactive. However, including this term at all times prevents oscillation in
the network and does not otherwise appear to affect the quality of the solution.
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dynamics of the AM are somewhat brittle in that appropriate parame-
ter settings are dependent on the nature of the external input. T would
recommend a more serious computational analysis of the problem to
others interested in building attentional mechanisms.

4.1.3 Guiding the Spotlight

Having addressed the question of how to implement an attentional
spotlight given knowledge of where to focus, I now take a stab at the
deeper question of how MORSEL knows where to focus. Sources of
knowledge guiding attention can be dichotomized into two classes:
data driven and conceptually driven. This dichotomy has a long his-
tory in the psychological literature. Milner (1974) distinguishes extrin-
sic and intrinsic control of attention; Butter (1987) distinguishes
reflexive and voluntary control; LaBerge and Brown (1989) use the
terms bottom-up and top-down control.

Attention is often data driven. To consider a simple case, attention
is drawn to objects but not empty regions in the visual field. This pro-
perty is incorporated into the AM by having every L | unit project to its
corresponding AM unit (as depicted in figure 4.1). Similar connec-
tions to the AM should be made from other elementary feature maps,
e.g., maps detecting color and motion. Perhaps most importantly,
input to the AM should include feature gradient maps-—an explicit
representation of inhomogeneities in the various feature maps
(LaBerge & Brown, 1989; Sandon, 1990); this serves as a primitive
form of texture boundary information. Through such inputs, attention
can be captured by such varied stimuli as an intense or flashing light,
object motion, or an odd element against a uniform background.

Further control is required, however. The mere presence of any
feature should not cause an attentional shift willy nilly: attention is
dependent on higher-level expectations and task demands. For exam-
ple, in the task of detecting a "—" in a display of vertical line seg-
ments, one would like for only the "-" to trigger attention to allow for
parallet search. (This "pop-out" effect, in which the target is detected
equally fast, independent of the number of distractors, has been docu-
mented by Egeth, Jonides, & Wall, 1972, Neisser, 1964, and Treis-
man, Sykes, & Gelade, 1977.} I thus propose that higher levels of cog-
nition can modulate the effect of each feature type on the AM, allow-
ing only the features of interest to capture attention (see LaBerge &
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Brown, 1989, for a similar proposal). Mechanistically, this is not dif-
ficult to implement: higher levels of cognition simply need to gate the
connections from each feature type in L; {and other such feature
maps) to the AM. These higher levels of cognition are beyond the
scope of MORSEL. Nonetheless, it is inferesting to speculate on what
forms of control higher levels have over the AM.

Koch and Ullman (1985) discuss two further heuristics for the
data-driven guidance of attention based on Gestalt grouping princi-
ples: proximity and similarity. Building a proximity preference into
the AM would bias shifts to locations in the neighborhood of the
presently selected location. Building a similarity preference would
bias shifts to locations with the same or similar elementary features as
the presently selected location.

Besides data-driven guidance, conceptually driven guidance—
direct control by higher levels of cognition—is required in many
situations, from reading, where text must be scanned from left to right,
to a variety of experimental tasks where selection is based on location.
For example, in the work of Jonides (1981) and Posner (1980), a cen-
trally presented arrow cue is used to indicate that attention should be
shifted to the peripheral location specified by the arrow. I have shown
the requisite input in figure 4.1 to symbolize top-down influences on
attention. The sort of control mechanism T envision might operate
based on principles similar to those of Thibadeau, Just, & Carpenter’s
(1982) model of eye movement control. Although attentional focus
can perhaps be dissociated from eye fixation (Eriksen & Hoffman,
1972; Posner, 1980), the two are surely related. From a more general
computational perspective, Chapman (1990a, 1990b} and Wiesmeyer
and Laird (1990) have discussed attentional strategies and control
primitives for visually-guided behavior. This important work is a
major step toward transforming the unspecified top-down AM inputs
into a concrete model of top-down attentional control.

If items of interest in the visual field vary in size, so must the
spotlight. Empirical evidence confirms this intuition (Eriksen & Yeh,
1985; Laberge, 1983). Thus, it seems critical that higher levels of
cognition be able to influence not only the locus of the spotlight but
also its radius. In the simulation experiments reported below, I show
that the size of the spotlight is dependent on the nature of the inputs,
The spotlight size can be further modulated by the parameter 0. Con-
sequently, I assume that 6 can be regulated dynamically by higher
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levels of cognition as a function of time and task, although this was
not necessary in the reported simulations,

4.2 Simulation Results

In the AM simuiations reported below, external inputs are determined
from the activations in one or more feature maps of BLIRNET’s L |, or
they may be specified by hand. An input to the AM at location (x,y)
contributes a value of .1 to ext,,, as well as a value of .002 to the
neighboring positions. The purpose of this blurring to neighboring
positions was to give the input a more continuous spread of activity,
and presumably, a closer approximation to early representations in the
human brain. ‘

Figure 4.4 presents a simple example in which T have specified
three blobs of external input. The output of the network is shown after
iterations 1, 5, 10, 15, and 20. Initially, activity levels of all AM units
are resct to zero. After iteration 1, the external inputs have been
copied into the corresponding AM units. After iteration 5, spotlights
are forming around all three stimulated locations, but by iteration 10,
activity in the two outer regions is beginning to be suppressed, This is
due to the fact that only one spotlight can be supported and the exter-
nal input to the center region is the strongest (four external inputs,
versus two for the left region and three for the right). By iteration 20,
the network has reached equilibrium.

Figure 4.5 shows an example with two input blobs. Once again, the
AM sclects the blob having largest external input. In this example,
however, the resulting spotlight is wider than in the first example.
The ultimate size of the spotlight depends on the base of external sup-
port a region receives; the support for the selected region is much
greater in the second example.

The next example is intended to simulate the presentation of two
letter strings, WiX and MUJ. Figure 4.6 shows the pattern of elemen-
tary feature activity in L | of BLIRNET in response to presentation of
the two strings. Assuming the sort of connections from L of BLIR-
NET to the AM discussed in section 4.1.3, the input to the AM will be
based on the total number of active features in each location, as dep-
icted in the top frame of figure 4.7. It is extremely difficult for the
AM to select one word because the total feature activations produced
by WIX and MUJ are quite similar-—35 versus 38—as is the
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External Input to the AM

AM, iteration 5

AM, iteration 10

AM, iteration 15

AM, iteration 20

Figure 4.4 Activations in the AM resulting from three input blobs. Each frame con-
sists of 36x6 array of activations, with the area of a white square corresponding to the
activity level; the largest squares represent an activity level of 1.0. The top frame
shows the external input to the AM. Small black dots are drawn in the locations where
the external input is zero, simply to indicate the extent of the array. The frames below
show activity in the AM over time as the network settles. By iteration 20, the network
has reached a stable state.

distribution of features within the strings. Nonetheless, after 100
itcrations, the AM selects MUJ, as shown in the bottom frame of figure
4.7. Note that for the first 20 iterations or so, activity in the AM
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External Input to the AM

AM, iteration 5

AM, iteration 10

AM, iteration 20

AM, iteration 25

AM, iteration 30

Figure 4.5 Activations in the AM resulting from two larger input blobs.
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I Yetoed bob - kRS

Figure 4.6 The pattern of elementary feature activity in L, of BLIRNET in response to

the two strings WIX and MUJL.
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External Input to the AM

AM, iteration 20

AM, iteration 40

AM, iteration 60

AM, iteration 80

AM, iteration 100

Figure 4.7 Activations in the AM resulting from the pattern of external input produced
by the strings WIX and MUF.

reflects all external sources of input: attention is broadly tuned to
include all items in the visual field. Over time, however, attention
narrows on a single region.

Ordinarily, English readers have a strong left-to-right bias. This
bias can be provided by the conceptually driven inputs to the AM.
Figure 4.8 shows the consequences of combining the bottom-up input
from presentation of WiX and MUJ and a top-down input biasing the
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Extemat Input to the AM

AM, iteration 10

AM, iteration 20

AM, iteration 40

AM, iteration 60

e

AM, iteration 80

Figure 4.8 Activations in the AM resulting from botiom-up external input from WIX
and MUJ, and a top-down input biasing the entire left field,

entire left portion of the field. After 60-80 iterations, the region
corresponding to WIX is selected,

A final example of the operation of the AM is presented in figure
4.9. 1 have simulated the situation in which higher levels of cognition
gate the L ;-AM connections so that only the \ and / feature maps
trigger the AM. Consequently, when the features of WIX MUJ are
activated in L, the letter X is selected. In this manner, higher levels
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External Input to the AM

AM, iteration 1

AM, iteration 5

AM, iteration 10

AM, iteration 15

AM, iteration 20

Figure 4.9 Activations in the AM resulting from external inputs based on the \ and /
features of the stimulus wiX MUJ. The location of the X is selected.

of cognition can control which item will be selected, but only if the
item has distinctive elementary features: in MORSEL’s encoding,
letters like W and M cannot be differentiated on the basis of elemen-
tary features,

In each simulation, note that during the initial phase of processing,
the locations of all stimuli become active. It isn’t until competitive
mechanisms take reign that a winning location emerges. Thus, the
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AM is unfocused initially, but over the course of processing it narrows
in on a single item. Because BLIRNET begins processing a display as
soon as it is presented—and before the AM has settled to
equilibrinm—initially BLIRNET attempts to handle all information in
the display simultaneously. If one were to observe the activity of
units in BLIRNET, it would appear as if the units responded to unat-
tended stimuli at first, but this activity was eventually suppressed. In
single cell studies of monkey visual cortex, Desimone (1989) has
observed this type of behavior: 60 msec after stimulus onset a
response is friggered in the extrastriate cortex, but not until 90 msec
does attention kick in and suppress unattended stimuli,

The AM was not designed with these data in mind, but it does
appear a natural consequence of such a filtering mechanism. There
are two basic designs one can envision: (1) a system that does not
allow the processing of any information until selection is complete;
and (2} a system that allows the processing of all information until
selection is complete. The AM, and apparently the mammalian brain,
is of type 2. This is sensible because it seems likely that the cost of a
cautious type 1 system is greater than that of a more cavalier type 2
system. A type 2 system allows meaningful information to be
extracted from the visual input before the attentional system settles,
the only drawback being that attention may not be finely focused on
the item of interest and that items may interfere with the processing of
each other. One might object to the operation of the AM on the
grounds that it takes too long to converge on a stable state, Atiention
shifts must be fairly brief: Treisman and Gelade (1980) estimate the
scanning rate to be 50 msec per item, although other estimates of the
time to focus on an item are larger, on the order of 200 msec (e.g.,
Colegate, Hoffman, & Eriksen 1973). Note, however, that these esti-
mates are at best an indirect measure of attention shifts; they are based
on the rate at which stimuli can be processed. Given that stimulus
processing commences before the AM converges, it is difficult to
know how these estimates relate to the operation of the AM. Further,
the speed of convergence of the AM is highly dependent on the param-
eters 8 and | and the strength of the external input. One can double
these values and greatly increase the speed of the AM, at the expense
of some instability. And finally, note that at the start of the simula-
tions presented here, AM activity levels were reset to zero. During
ongoing processing, however, the AM must pass from one nonzero
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state to another. This turns out to help matters. To push the AM out
of its current state, it is necessary to suppress the active units, either
endogenously—via habituation that builds up over time (Posner &
Cohen, 1984)—or exogenously—via biases from high-level processes.
Such suppression should facilitate shifts to nearby locations, allowing
a rapid and smooth flow of attention.

4.3 Early Versus Late Selection: Where Does the Atten-
tional Mechanism Fit?

A central issue in perceptual psychology over the past three decades
has been the level at which attentional selection operates. Theories of
attention can be dichotomized into two opposing views: early and
late sefection. Early-selection theorics (Broadbent, 1958; Treisman,
1969) derive their name from the assertion that selection occurs early
in the sequence of processing stages, prior to stimulus identification.
In contrast, late-selection theories (e.g., Deutsch & Deutsch, 1963;
Norman, 1968; Posner, 1978; Shiffrin & Schneider, 1977) posit that
selection occurs late in processing, following stimulus identification.
Additional properties go hand in hand with the central assumption of
each theory (Pashler & Badgio, 1987). Early selection generally
implies that (a) selection is based on low-level features such as
stimulus location or color, (b) the processing system is of quite limited
capacity, and (c) stimulus identification is necessarily serial. In con-
trast, late selection generally implies that (a) selection is based on
high-level features such as stimulus identity, (b) the processing system
is without capacity limitations, and (c) stimulus identification
proceeds in parallel.

The early- versus late-selection dichotomy has been proven inade-
quaie to account for the immense body of attentional data (Johnston &
Dark, 1986) and current theorizing toward hybrid views that include
aspects of both early and late selection (Mozer, 1988; Navon, 1989;
Pashler & Badgio, 1985; van der Heijden, Hagenaar, Bloem, 1984).
The view of attention presenied by MORSEL is perhaps the most
explicit of such theories. It agrees with late-selection theories in sug-
gesting that multiple display items can be processed in parallel to a
high level of representation, even to the point of making simultancous
contact with semantic knowledge. Further, selection via the PO net
can be based on high-level (semantic or orthographic) features; this is
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accomplished by priming semlex units or PO net units, respectively, to
bias the pull out process, as discussed in chapter 3.% In other respects,
however, MORSEL embodies an early-selection theory. First, the AM
is an early selection device. It operates on a low-level representation,
much in the spirit of filtering and attenuation operations proposed by
early-selection theories. Second, the processing capacity of MORSEL
is limited. If multiple items are analyzed simultaneously, interactions
among the items can lead to damaging crosstalk; and there is the
further problem that information about the absolute location of each
item is lost. Thus, MORSEL shows characteristics of both early- and
late-selection theories.

Pashler and Badgio (1985, 1987) have proposed a similar hybrid
view of attentional selection based on a large body of empirical work.
They summarize their view with a list of six properties required of an
attentional mechanism:

1. Visual attention can be optionally allocated to the loca-
tions of one or many visual stimuli, by their location.

2. Objects in locations that are rot attended are subject to
attenuation early in processing, prior to object identifica-
tion.

3. All the objects present in locations that are attended are
identified in parallel.

4, This parallel identification makes only limited informa-
tion available centrally (i.ec., for response selection or
conscious awareness): specifically, the identities of the
attended objects...

5. The system has an important additional capability: to
redirect visual attention to the location where a token of
an active identity is present...

6. Finally, it is hypothesized that...the only way one attri-
bute of a stimulus (e.g., color, identity) is tied to another

5 Note that pull out implies serial access, not serial identification: all processing for
the identification of an item takes place before the pull out stage. Many late-selection
models, which allow a great deal of parailel processing, have similar readout
hottlenecks (e.g., Allport, 1977; Duncan, 1980; Johnston & McClelland, 1980; Pos-
ner, 1978).
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attribute of that stimulus is that detection of any attribute
permits narrowing of visual attention onto its location...
(Pashler & Badgio, 1987, pp. 78-79)

These properties are entirely compatible with MORSEL. Properties
1-4 describe MORSEL directly. Property 5 is not intrinsic to MORSEL
but can easily be incorporated, as I suggest in more detail in section
7.1.4. Finally, property 6 is possible via the gated connections from
L to the AM (see section 4.1.3), which can be used to guide attention
to the location(s) in which a particular elementary feature appears. I
find it both surprising and exciting that MORSEL is in such close
accord with the conclusions of Pashler and Badgio. MORSEL was not
designed specifically to address attentional issues, yet it makes strong
predictions concerning the nature of attentional selection. Further-
more, the hybrid view of attentional selection presented here seems
like a possible resolution to the longstanding debate between pro-
ponents of early and of late selection,

4.4 Related Work

Koch and Uliman (1985) have developed a related neurally inspired
model of the attentional spotlight. Their model is similar to the AM in
that it consists of a topographic map in which units are activated to
indicate the allocation of attention. Additionally, it operates by gating
the flow of activity from a low-level input representation composed of
clementary features. In Koch and Uliman’s model, however, selection
is performed by a simple winner-take-all network. This results in a
single point of activity, as compared to the distributed activity pattern
produced by the AM. Their model is thus unabie to adjust the radius
of the attentional spotlight.

LaBerge and Brown (1989) have described an attentional control
mechanism which also has many properties in common with the AM.
Their model is intended as an alternative to a moving-spotlight model
of attention, the key feature of which is that shifts in the spotlight take
time monotonically related to the distance of the shift. LaBerge and
Brown present data arguing against such a model. Although I have
described the AM as forming a spotlight, it is not a moving-spotlight
model in that the time required for the AM to focus on a location is not
necessarily related to the previous location of focus. The emphasis of
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LaBerge and Brown’s work is different from that reported in this
chapter. LaBerge and Brown have emphasized attention shifts—
movements from one attentional focus to another—while my simula-
tion studies of the AM have been based on the assumption of no prior
attentional bias. Nonetheless, the two approaches seem compatible
and complementary. To handle the effects of expectation, LaBerge
and Brown have included a location expectation input to the attention
system that biases attention shifts to task-relevant locations. It would
be straightforward to incorporate this into the AM.

A drawback of both the Koch and Ullman and the LaBerge and
Brown models is that they are embedded in a serial processing systemn,
capable of recognizing only one item at a time. Without a system like
BLIRNET, these models serve merely as an early selection device.
This brings up the point that it is not the attentional mechanism itself
that determines whether the system as a whole is best characterized in
terms of early or late selection, but rather how the attentional mechan-
ism is integrated into the rest of the system. This is where MORSEL
makes a distinct contribution to theories of attention.



5 The Visual Short-Term Memory

In this chapter, I gather together the components of MORSEL
described in chapters 2—-4 and discuss the final stage of perception:
the formation of a visual short-term memory. I begin with a short
digression to recap MORSEL’s overall processing structure,

5.1 Meanwhile, Back in the Color Detection Module

MORSEL was designed to perfortn more than just letter and word
recognition. The original sketch of MORSEL (figure 1.2) contains a
number of processing modules, of which BLIRNET is but one. Fach
module is responsible for extracting information about a particular
attribute dimension of the visunal stimuli appearing on the retina.
BLIRNET detects information about the identities of letters and
words. ! One might imagine other modules that detect information
about arbitrary 2D geometric forms, faces, colors, motion, etc. To be
concrete, consider two additional modules: a color detection module
that produces a description of the colors that appear in the attended
region and a case detection module that produces a description of the
case in which letters in the attended region are printed. With these
additional modules, MORSEL would be capable of recognizing
colored letters of various cases.

Each module is presumed to operate similarly to BLIRNET in that it
maps a collection of low-level position-specific features into a collec-
tion of high-level position-independent features. In fact, to be con-
sistent, "BLIRNET" should really have been the generic name for the

tIn the current implementation, BLIRNET is sensitive to the size and case of letters as
well as their identities. This is simply because BLIRNET was trained on letters of only
one size and case. With suitable training, BLIRNET could in principle learn to respond
only on the basis of letter identity and to ignore letter form, just as it has leamed to ig-
nore absolute letter location.
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architecture of each module, rather than the name of the module deal-
ing specifically with word recognition: By replacing the inputs to
BLIRNET with, say, elementary color features and the outputs with
units representing color names and perhaps color patterns {(e.g., blue
and yellow stripes, black and red checkerboard), BLIRNET is
transformed into a color detection module. I shall not attempt to
specify the representations further. Clearly a great deal of work would
be involved, but it is not germane at present. The important point here
is that when an object is presented to MORSEL, it is characterized
along a number of attribute dimensions.”

Just as BLIRNET can process several items simultaneously, so can
the other modules. Just as BLIRNET yields noisy patterns of activity,
so do the other modules. Thus, just as BLIRNET requires a PO net to
disentangle and clean up activity patiems, so do the other modules.
For BLIRNET, the PO net serves to select a single word description
from the assortment of letter-cluster activations. Similarly, for the
other modules, a single color-description, letter-case description,
motion description, etc., is pulled out. It is unimportant whether one
envisions individual PO nets for each module or a single PO net that
encompasses all modules. Because the modules are functionally dis-
tinct, there should be few, if any, interactions among the units of dif-
ferent modules. It is necessary, however, for the semlex units, which
interact with the pull-out process, to be shared among modules. For
instance, semlex units representing the abstract notion of redness
should play a role both in the pull out of the word RED and the color
red.

5.2 Integrating the Attributes of an Object

The next problem is how to bind together the attributes belonging to a
single object which have been independently registered by various
modules. For instance, if MORSEL is shown a display consisting of a
red X and a biue O, the output of BLIRNET will indicate the presence

2 | distinguish between the terms "attribute” and "feature." An attribute corresponds to
a pattern of activity arising in a processing module, a feature to the information
represented by a single unit. Thus, word identity is an attribute, a particular letter
cluster is a feature; the color red is an attribute, but it may be represented in the color
detection module by the collective activation of a number of more primitive features.
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of an X and an O, and the output of the color detection module will
indicate some red and some blue, but how does MORSEL recognize
and represent the red as being an attribute of X, and the blue an attri-
bute of 07 Further, how does MORSEL tie an object to a location in
the visual field? What follows is my interpretation of feature-
integration theory (Treisman & Gelade, 1980; Treisman, Sykes, &
Gelade, 1977) within the framework of MORSEL.

In agreement with feature-integration theory, MORSEL requires that
the binding of attributes be performed serially. In contrast to feature-
integration theory, however, the attributes can be of a relatively high
order. To bind attributes, attention must first be focused on the object
of interest. This causes the object’s attributes to become most active
in the top layer of each module, allowing the attributes to win their
respective competition in the PO net. Moreover, since attention is
currently focused on the object, the state of the AM represents the
object’s retinal location and size; the location and size of the object
can therefore be considered as additional attributes. > LaBerge and
Brown (1989) have also noted that location can be derived from the
operation of the attentional system and is therefore a somewhat spe-
cial attribute (cf. Nissen, 1985). At this point, one could say that the
object’s atiributes—identity, color, location, and size—are bound by
their simultaneous activation. That is, we know what attribute goes
with what because all relevant attributes are simultaneocusly active,
This method of binding, first suggested by Hinton (1981b), takes
advantage of temporal coherence and contrasts with Feldman’s (1980)
use of spatial coincidence.

As in feature-integration theory, attention in MORSEL provides the
glue necessary to tie together attributes of an object. Specifically, the
AM coordinates processing so that each module concentrates ifs
resources on the same retinal region, hopefully on the same object.
This role of attention is distinct from the role suggested in chapter
4—that of preventing crosstalk among objects. It is interesting that a
single mechanism subserves both the function of enhancing perfor-
mance in a spatially restricted region and of feature integration (cf.
Briand & Klein, 1987, for a contrasting view).

3 At some point in processing, the description of the object’s location and size in a re-
tinal coordinate frame must be converted to a viewer- or scene-based frame, MORSEL
currently has little to say about where and how this critical transformation occurs.
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5.3 Recoding the Representation: A Visual Short-Term
Memory

Binding attributes of an object using the method of simultaneous
activation works only when no more than one object needs to be
represented. If MORSEL is shown, say, a red X to the left of a blue 0,
however, two sets of bindings-—{red, X, left} and {blue, O, right}—
must be gencrated. As long as iconic information (L feature activa-
tions) remains available, MORSEL can simply switch attention back
and forth from one object to the other. But people do not require
iconic information to access the attributes and location of an object.
Thus, a visual short-term memory (STM) is required to hold the sets of
bindings.

An STM is a structure in which some relatively small number of
items can be stored and later retrieved. In common terminology, short
term memories are ones that reside in the activity of a set of units, as
contrasted with long term memories, which are held in the connection
strengths between units (Grossberg, 1982). We have already encoun-
tered an STM of sorts in MORSEL: the letter-cluster representation. A
particular word is stored in this memory by turning on units for each
of its letter clusters; several words can be held simultancously by
superimposing their activity patterns,

More formally, an STM consists of a set of processing units in
which an item is represented by a sparsely distributed pattern of
activity, As depicted in figure 5.1, the activity pattern of one item
may overlap with that of another. To store an item in the memory, its
subset of units are turned on by an external source. Recurrent connec-
tions from each unit to itself sustain activity, perhaps with gradual
decay over time. The activation function for an STM unit might look
like:

si (1) = £ [8s; (1) + ext; ()],
where s; (¢) is the activity level of STM unit i at time ¢, & is a decay

rate, ext; (¢) is the external source, and

0 x <0
flx)y=y x _ 0=x<1
1 x > 1.



90  THE VISUAL SHORT-TERM MEMORY
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PO Net§,

Visual B
Short-Term §
Memory

Figure 5.1 A generic short-tferm memory.

Each item in MORSEL’s STM is a visual object—-i.c., a conjunction
of attributes from the various modules that jointly characterize an
object. In order to permanently bind the attributes together, the
independent attribute representations are recoded into a multi-
dimensional representation (Hinton, 1981b; Smolensky, 1990). The
basic idea is that each STM unit is activated by the presence of a par-
ticular combination of features across the modules. One impiementa-
tion might be: '

exti{ty= [T 2 pj")

meM; jedl

where p*(¢) is the activity of PO net unit j in module m at time ¢, M,
is the subset of modules to which STM unit i is connected, and J/" is
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the subset of PO net units within module m to which STM unit i is
connected. In the equilibrium state of the PO net, where all p/” are 0
or 1, an STM unit will be tumed on by a conjunction across modules
of a disjunction of features within a module. Intermediate states of the
PO net will tend to reinforce these values; ones that do not will decay
away if 6 < 1.

Consider a simple example that demonstrates how colored letters in
various locations might be represented. Figure 5.2 shows two PO nets,
one representing the outputs of BLIRNET and the other of a color
detection module. Units for the letters X and O and the colors red and

PO Net
{Color Detection Module)

{BLIRNET)

Attentional
Mechanism

Figure 5.2 A short-term memory that permits the representation of colored letters,
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blue are depicted. In addition, the attentional system activates units
indicating the focus of attention, coded here as left, center, and right.
The STM has a unit for every inter-dimensional pair of features. Thus,
if the pattern {red, X, left} appears, STM unifs red-X, red-left, and X-
left become active. If the pattern in the PO net switches to
{blue,0,right}, then STM units blue-0, blue-right, O-right are also
activated. Using this coding scheme, several conjunctions of features
can be represented simultaneously in the STM.

This example trivializes the problem in assuming that each attribute
is encoded locally at the PO net level. In general, attribute representa-
tions will be distributed, e.g., word identity is encoded by a set of
letter-cluster units. This does not change the nature of the binding
computation; the STM must simply bind together the features that
compose an attribute rather than binding the attributes themselves.
Smolensky’s (1990) tensor-product notation allows the binding of
both localist and distributed representations to be described by the
same formalism.

One cause for concern with this proposal is the number of units
required for the STM. With each attribute dirension represented by a
reasonably small number of features, say 5,000, a STM that binds tri-
ples of features would require as many units as there are neurons in
the brain! The hardware requirements can be eased in three ways.
First, it may not be necessary to represent all possible conjunctions.
Some form of unsupervised regularity detection (e.g., Rumelhart &
Zipser, 1985) could be used to determine the conjunctions that occur
in the stimulus environment, Second, it is known that with a statisti-
cal sample of the possible conjunctions, any combination of attributes
can be reconstructed with high probability due to the inherent redun-
dancy of the conjunctive encoding. This is the principle underlying
Marr’s (1969) codon representation. Third, by increasing the set size
of J to several elements, rather than just one as in the example, the
receptive field of each STM unit becomes coarse coded. As a result,
the STM units are used more efficiently, allowing the number of STM
units to be reduced, but at the expense of the number of items that can
be represented simultaneously in the STM. This principle has been the
basis of other connectionist STMs (St. John & McClelland, 1986;
Touretzky, 1986; Touretzky & Hinton, 1985, 1988; see Rosenfeld &
Touretzky, 1988, for a mathematical analysis of the capacity of
coarse-coded STMs),



A SHORT-TERM MEMORY PULL-OUTNET 93

5.4 A Short-Term Memory Pull-Out Net

Once information has been stored in the short-term memory, how is it
retrieved? A PO net can be used to pull individual items out of the
STM, just as one was used to recover single words from BLIRNET’s
letter-cluster representation. This network is drawn above the STM in
figure 5.1.

The STM PO net must be capable of retrieving an item given a par-
tial description of the item, This is readily achieved by priming units
of the STM PO net. For instance, if higher-level processes wish to
retrieve a blue item, all PO units representing the attribute blue can be
given a slight amount of initial activation, which will bias the selec-
tion process in favor of blue items. This same trick was used to pull
out a word with a particular initial letter from BLIRNET’s letter-cluster
representation. Because the STM is a visual memory, each item is
indexed by its location. Thus, even if higher level processes have no
expectations as to what is contained in the STM, the location index
allows a convenient means of accessing items: the memory can be
scanned by priming each location sequentially.

Unfortunately, nonvisual STMs do not have this convenient location
"hook” from which retrieval can be guided. Tt would therefore seem
necessary to have a more general mechanism for enumerating the
items in memory. I propose the following two-step scheme. First, a
random set of units in the STM PO net are primed and the network is
allowed to settle, resulting in one item being selected. Second,
activity levels of the selected units are reset to zero and their thres-
holds are raised slightly. The stochastic priming procedure is then
repeated. Previously retrieved items will have a lower probability of
being selected again because of their raised thresholds.* Eventually,
all items should be read out of the memory,

The nature of STM representations and the pull out process place
limitations on memory capacity. Readout from STM will be difficult
if stored items are highly similar or if too many items are stored.
While limitations are seldom desirable, these limitations are in accord
with human data: The degree of similarity and number of items are

4 This method of implementing a serial search by raising the thresholds of previously
retrieved items is similar to that used in Adaptive Resonance Theory (Carpenter &
Grossberg, 1987, 1988).
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well-known factors affecting the accuracy of auditory short-term
memory (Baddeley, 1986; Wickelgren, 1966).



6 Psychological Phenomena Explained by
MORSEL

Visual perception and attention have been central coneerns of experi-
mental psychology during the past century. As such, the body of
relevant data has grown so vast that no single model of visual
processes can hope to account for the data in all its intricacy. By
necessity, a model’s domain must be limited, either by restricting its
scope to the quantitative results of a small collection of data, or by
allowing a considerably broader scope but at the expense of detail. 1
have taken the latter approach with MORSEL, having tried to account
for a wide range of psychological phenomena. As this introduction is
intended to forewarn, the accounts are sometimes qualitative in nature
and are justified in terms of single exarnples rather than extensive
simulation experiments. It was, however, necessary to sacrifice some
depth of analysis to attain the breadth.

In each of the sections to follow, I describe a phenomenon, cite
relevant experimental and/or anecdotal data, and then argue that MOR-
SEL behaves in accord with the data. In most cases, rather than simu-
lating the behavior of the complete model, I focus on the component
of MORSEL respousible for the phenomenon in question, The purpose
of doing so is to avoid losing sight of the model’s key properties in a
sea of details.

6.1 Basic Phenomena

Here, 1 present evidence in support of three basic properties of MOR-
SEL: parallel recognition of multiple objects, capacity limitations, and
translation invariant recognition.

6.1.1 Parallel Recognition of Multiple Objects

There is an assortment of evidence suggesting that the visual system
can process more than one object at a time. Beginning with anecdotal
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reports, I've recorded a number of my own perceptual errors in read-
ing that make a case for parallel processing. Here are three such
errors, all of which, coincidentally, come from newspaper headlines:

1. PHILLIPINE FORCES ON RED ALERT
ROADBI.OCKS RISE AFTER REPORTS THAT AQUINO FOES JOIN

2. COUNTY ACTS TO BAR SINGLETON HERE
3. TOLL RISES IN BRIDGE COLLAPSE

In the first example, 1 misread FOES JOIN as JOINS FOES; in the
second, BAR SINGLETON turned into SINGLES BAR. Both examples
indicate some confuston in the linear order of text, difficult to imagine
if words were analyzed left-to-right serially. In the third example, I
had the immediate sense that TOLL referred to a monetary toll, not a
cost in lives. It seems quite surprising that the "monetary toll" mean-
ing came to mind Initially, given that in newspaper headlines TOLL
generally refers to a "cost in lives”; had the headline read TOLL RISES
IN BUILDING COLLAPSE, a misinterpretation seems unlikely. One
explanation for this error is that several words of the headline were
analyzed in parallel, allowing semantic features of BRIDGE to prime
the "monetary toll" meaning of TOLL. (Admittedly, other interpreta-
tions of these errors are possible.)

Although there is no conclusive experimental evidence stating that
several different words can be processed in parallel, there is a reason-
able amount of data suggesting that, at very least, irrelevant and unat-
tended words are often processed (Allport, 1977; Bradshaw, 1974;
Willows & MacKinnon, 1973). Further, the fact that more than one
word is processed on a fixation in reading (McConkie & Rayner,
1975, Rayner, 1975) might argue that information is extracted from
several retinal locations simultaneously. Direct experimental evi-
dence suggesting facilitation from redundant words is found by Mullin
and Egeth (1989). In their study, observers were faster to make a lexi-
cal decision when two copies of a four-letter string were presented
than when a single instance was presented,

The evidence for parallel detection of single letters and digits is
much stronger. Four sets of results are relevant. First, redundant
single-letter targets have also been shown to facilitate perception, in
proportion to the number of such targets (van der Heijden, 1975).
Second, relatively flat slopes can be found in visual search tasks with
an increasing number of items in the display (Egeth, Jonides, & Wall,
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1972; Schneider & Shiffrin, 1977). Third, Pashler and Badgio (1985)
established that degrading a visual display slows reaction times in a
search task by the same amount regardless of display size. They argue
that the degradation interferes with character recognition and that if
recognition were serial, the slowing would have increased with
display size. Fourth, the most compelling evidence of all comes from
studies comparing the accuracy of target detection when an array of
four characters is exposed in successive pairs, each for a fixed dura-
tion, to when all four characters are exposed simultaneously for the
same duration. The simultaneous condition does not reduce the level
of performance (Duncan, 1980; Eriksen & Spencer, 1969; Pashler &
Badgio, 1987; Shiffrin & Gardner, 1972). All of these results speak
directly against the involvement of serial visual processes.

BLIRNET was, of course, designed to permit the parallel recogni-
tion of multiple objects. In chapter 2, I presented examples of two
words being recognized simultaneously. BLIRNET has not been tested
on more than two words, primarily due to the limited size of its retina.
I have, however, trained BLIRNET to recognize individual letters (see
section 2.4.2) using a regimen that included up to three simultaneous
letters, and this posed no significant problem for the model,

6.1.2 Capacity Limitations

Many investigators have noted that the ability to identify familiar
stimuli in parallel does not necessarily imply a freedom from capacity
limitations (e.g., Kleiss & Lane, 1986; Pashler & Badgio, 1987,
Rumelhart, 1970); the efficiency with which any item is processed
might be reduced by the number of other items being processed.
Using the simultaneous-successive paradigm described above, an
advantage for successive displays can be found if the items are highly
confusable (Kleiss & Lane, 1986; Pashler & Badgio, 1987) and if the
number of display items is increased from four to nine (Prinzmetal &
Banks, 1983), indicating a limit on parallel processing. Even with
small displays of nonconfusable items, a conclusion of strict parallel-
ism must be tempered by experiments showing that stimuli separated
by Iess than approximately one degree of visual angle interact (Collins
& Eriksen, 1967; Eriksen & Hoffman, 1972; Estes, 1972).

BLIRNET, although designed to process multiple items, is by no
means free of capacity limitations. Interactions among items are
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common and escalate when items are similar and closely spaced (both
of which become more likely as the number of items is increased).
Examples of these interactions are presented in section 6.2. BLIRNET
concurs with earlier theoretical work that has stressed crosstalk as the
basis for the degradation of performance with multiple display items
(Kinsbourne, 1981; McClelland, 1985, 1986a; Milner, 1974,
Schneider, 1985).

BLIRNET shows an additional limitation on parallel processing:
when multiple items are analyzed simultaneously, identity codes are
activated but location information is lost. To respond based on loca-
tion, attention must be directed to the location of interest, restricting
encoding to the item at that location; this sort of processing is neces-
sarily serial. Kahneman and Treisman (1984) have noted that experi-
mental tasks requiring selection by location generally find in favor of
sequential processing, whereas those requiring selection by higher-
Ievel stimulus properties such as identity find in favor of parallelism.
More to the point, Pashler (1984) presents experimental support for
the notion that the locations of multiple items cannot be ascertained in
parallel.

Even in circumstances where BLIRNET has the capacity to process
multiple items, the PO net presents a bottleneck. Only one coherent
pattern can be read out from the PO net at a time. Because the semlex
units are tied to the pull-out process, there is a limit on semantic and
lexical access. This behavior is consistent with results of Mullin and
Egeth (1989) indicating a capacity limitation on the ability to semanti-
cally categorize words and analyze the lexical status of two different
words in parallel.

6.1.3 Translation Invariant Recognition

Objects can be recognized regardless of their exact location on the
retina. This is trivially demonstrated by fixating on a point and bring-
ing an object of interest into view. Whether the object is left or right
of center, it can be identified.

BLIRNET endeavors to perform translation invariant recognition.
Translation invariance comes about partly from the architecture of
BLIRNET (see section 2.3.4), and partly from the fact that objects are
presented in a variety of retinal locations during training, In other
words, BLIRNET’s design facilitates translation invariant recognition,
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but the complete solution is not hardwired into the network. This fact
suggests the unintuitive prediction that learning involving stimuli
presented in one retinal position may not transfer perfectly to stimuli
presented in another position. Walter Schneider (personal communi-
cation, 1990) has preliminary experimental results supporting this
prediction. J

While BLIRNETs task is the detection of identity information, fac-
toring out any effects of location, location information is preserved
along a different pathway—running from the input maps to the AM to
the STM. This is consistent with the impressive collection of neu-
roanatomical and neurophysiological evidence for the separation of
processing of "what" and "where" in the primate cortex (Ungerleider
& Mishkin, 1982).

6.2 Perceptual Errors

People produce a variety of perceptual errors when several objects are
simultaneously present in the visual field. In the following sections, I
describe some of these errors and the conditions giving rise to them,
and then show how they can be accounted for by MORSEL. As it turns
out, MORSEL offers a uniform interpretation of ail the errors in terms
of locational uncertainty at various levels of processing.

6.2.1 Feature Perturbation Errors

Studies suggest that features of an object can be incorrectly perceived
as belonging to neighboring objects (Treisman & Gelade, 1980; Wol-
ford & Shum, 1980; cf. Duncan, 1987, for a dissenting opinion). For
example, when an F and L are briefly presented side by side, observers
might report seeing an E if the underbar of the L is perceived as part of
the F.

Such feature perturbation errors occur in MORSEL due to large
receptive fields of BLIRNET s units and the fact that these units do not
encode the relative locations of features within their receptive fields.

I In Schneider’s task, subjects are instructed to ook at a fixation point and then the
stimulus is briefly presented. The presentation is sufficiently brief that subjects do not
have time to make eye movements, hence the retinal location of the stimulus is con-
trolled.
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For example, a BLIRNET L, unit cannot distinguish a stimulus like ¥
from E if all features fall within the unit’s receptive field. Information
about relative location of features is not completely lost, however,
because units have overlapping receptive fields; even if the F_ falls
entirely within one unit’s receptive field, there will be another in
which only the F or _ or their parts lie. Although the information
needed to distinguish F_ and E is preserved in BLIRNET, it is
represented only implicitly: the two stimuli produce extremely simi-
lar patterns of activity and accurate recovery of the information
requires careful analysis of activity patterns. Thus, the information is
sufficiently delicate that recovery may be impossible if noise is
present in the system. Such noise can be conquered only by increas-
ing processing time (because the effects of noise average out over
time) or by focusing attention on single items.

To simulate feature perturbation errors in BLIRNET, I performed an
experiment with the version of BLIRNET trained to recognize indivi-
dual letters. The letters T, F, O, and P were presented as input in three
different contexts; adjacent to a horizontal underbar (" "), adjacent to
a diagonal bar oriented at 135 degrees ("\"), and in isolation. When
the T and F are combined with the underbar, I and E are formed,
respectively, when the O and P are combined with the diagonal bar, ¢
and R are formed. The letters were presented in seven randomly
selected locations, with the additional segment immediately on the
right. The ratio of activation of the target letter (T, F, 0, or P) to the
conjunction letter (I, E, Q, or R) was measured for each trial. The
mean ratio was 5.60 when the target was presented in isolation, 1.63
when presented with a control context (diagonal bar for T and F,
underbar for 0 and P}, but only .43 when presented with the conjunc-
tive context (underbar for T and F, diagonal bar for O and P). When
this ratio is less than one, the conjunction letter is liable to be chosen
over the target letter.

This effect seems related to the phenomenon of lateral interference,
in which the perceptibility of an item depends on its distance from
other items (Estes, 1982; Townsend, Taylor, & Brown, 1971; Wolford
& Hoilingsworth, 1974). As such, the farget letter should become
more discriminable as the spacing between it and the adjoining con-
text is increased. In figure 6.1, BLIRNET shows this property both for
control and conjunction contexts. Separation between the target and
the context is measured in letter widths (three cells on BLIRNET’s
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scontrol
context

conjunction
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Target:Spurious Activity Ratic

oob L o L o Lo w1y

Separation (in Letter Widths)

Figure 6.1 Demonstration of lateral inferference in BLIRNET. A target letter is more
readily detected as the distance between it and other information in the visual field is
increased.

retina); zero separation means that the target is immediately adjacent
to the context—the data reported above. Note that for conjunction
contexts, more than four intervening spaces are required before the
target becomes clearly discriminable. Although these results cannot
be compared quantitatively to human data, they appear qualitatively
similar.

6.2.2 Letter Transposition Errors

When observers are presented with brief displays containing random
letter strings, they have great difficulty localizing letters; in particuiar,
adjacent letters are often transposed (Estes, Allmeyer, & Reder, 1976;
Mewhort & Campbell, 1978). For instance, CVNR might be perceived
as CNVR. Such errors, known as transposition errors, are far less fre-
quent within words, even when the transposition would result in
another word, e.g., CALM to CLAM (Duncan, 1987; Johnston, Hale, &
van Santen, 1983).

In BLIRNET, letter position uncertainty is attributable to the same
source as feature position uncertainty—broadly tuned receptive
fields—but at a higher level of the system. Evidence of letter position



102

uncertainty in BLIRNET can read

rearranged order (see section 2.5

tive in suppressing spurious clust

supporting CALM form a gang (M
overcome the spurious activations,

tionally, the neighboring clusters *

PSYCHOLOGICAL PHENOMENA EXPLAINED BY MORSEL

ily be seen in the spurious letter-
cluster activations: one common type of spurious activation involves
clusters whose letters are contained in the display but in a slightly
.1). For instance, when CALM is
presented, not only are the appropriate clusters **C, **_A, *CA, CAL,
AL_*, efc. activated, but so are spurious clusters like CLA and #* L,
which suggest L in the second position. The PO net, however, is effec-
ers, and hence, in suppressing the
alternative interpretation CLAM. The PO net succeeds because clusters
cClelland & Rumelhart, 1981) and
To be concrete, consider the spuri-
ous activation **_L. This cluster competes directly with =+ A, Addi-
CA and *_AL excite #*_A but inhibit

C_AM M™* AM *CA CAM *C CLM *LA LW

ALM * AL LM* *CA. *1 * A *CL *CL AL*

A™ L*™ 348 CLA CAL CLM AM* LA *
BLIRNET
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PO net, iteration 15
A MY O AM D8 CAM *C
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o= L ZiA CAL C L
PO net, iteration 20
LA M AM 0 A CAM  **C
AlLM  * AL LM* CA iR AL *
#7 L*M™ pEm Sita CAL C LM
PO net, iteration 25

Figure 6.2 Pull out of CALM from a letter
more consistent with CALM than CLAM.

cluster activity pattern that is only slightly
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# 1. Because **_L is not consistent with most of the other active
units, it is eventually suppressed.

Supposing that **_L had sufficient support from other spurious
activations, perhaps CLAM could win out. To test this notion, I ran a
simulation and obtained a surprisingly powerful result. The simula-
tion involved activating all clusters of CALM and all but one of CLAM,
the LAM unit. This is just about the worst signal to noise ratio imagin-
able. Still, the PO net selects CALM, as figure 6.2 shows. This result
is obtained whether or not semlex units are included in the simulation.
Thus, the mutual support of neighboring clusters suppresses an amaz-
ing amount of noise.

Now what happens with an orthographically irregular string like
CVNR? When CVNR is presented, not only are the appropriate clusters
#xC, %V N _** and R** activated, but so are spurious clusters like
#+ N and v_**+. Unlike CALM, CVNR does not benefit from the pull out
process because its clusters do not encode combinations of letters and
thus cannot form mutually supportive coalitions to suppress the spuri-
ous clusters, and further, there is no top-down support from semlex
units. Consequently, the relative ordering of V and N in CVNR remains
ambiguous, To summarize, MORSEL proposes that letter (ransposi-
tion errors result when: (1) the positions of individual letters are
registered with slight inaccuracy, and (2) there is no higher-level
knowledge to encode relationships among the letters.

6.2.3 Letter Migration Errors

In brief presentations of multi-word displays, letters of one word are
sometimes perceived as belonging to another word (Allport, 1977,
McClelland & Mozer, 1986; Mozer, 1983; Shallice & McGill, 1978).
For instance, when SAND and LANE are presented, observers might
report seeing LAND or SANE instead of SAND. These responses are
indeed due to the migration of the L or E of LANE: when SAND is
presented in the context of, say, BANK, which contains no L or E, the
probability of reporting LAND or SANE instead of SAND is considerably
reduced. Lefter migration errors are far less frequent when the two
words share no letters in common, say SAND and LOVE, even though
the same letter migration responses are possible. This result is termed
the surround-similarity effect.
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MORSEL can produce letter migration errors, in the following
manner. When attention is not focused, letter clusters of both words
in the display are activated simultaneously to some degree. In addi-
tion, clusters sharing letters with either of the presented words are
often activated (see section 2.5.1); clusters sharing letters with both of
the presented words become particularly active, e.g., S_NE, SA_E,
L_ND, and LA_D. The amalgam of letter-cluster activations is con-
sistent not only with the two presented words, but is also reasonably
consistent with the two potential migrations. For instance, the migra-
tion response SANE can be formed by combining clusters from the
beginning of SAND (e.g., **S, *SA, SAN) and from the end of LANE
(e.g., ANE, NE*, E**), along with the partially activated clusters S_NE
and SA_E. Consequently, the migration words are plausible candidates
for selection by the PO net.

Why are migrations infrequent when SAND is presented in the con-
text of LOVE instead of LAND? Examination of letter-cluster activity
resulting from SAND and LOVE reveals that the migration words are
unlikely candidates for pull out. SANE, for instance, is missing its
ending clusters—A_E*, ANE, and NE*—as well as clusters linking its
two halves—SA _E and S_NE. Another way of looking at the situation
is that the fewer letters two words share in common, the less overlap is
found in their patterns of activity; and the less overlap, the easier it is
for the PO net to disentangle one word from the other. To the extent
that the PO net succeeds in disentangling words, migration errors are
unlikely. Thus, MORSEL predicts that SAND and LOVE should pro-
duce fewer migration errors than SAND and LANE.

To simulate the production of migration errors during pull out, the
PO net was run on a set of letter clusters that might be activated by
presentation of SAND and LANE. This set consisted of all clusters
belonging to either word, which were assigned activation levels of 1.0,
and all clusters matching both words on two letters or delimiters (e.g.,
S_NE, *_AG), which were assigned activation levels of 0.6. Gaussian
noise, N (0,0.1), was added to each activity level; this noise represents
perceptual error due to brief exposures and lack of focused attention.
In 100 replications of the pull-out process, the migration responses
SANE or LAND were obtained on 43 of the runs. Figure 6.3 presents
one run that yielded SANE. The pull out process was also tested on
SAND and LOVE. With this pair, only 6 of the 100 runs yielded the
migration responses SANE or LAND. The exact proportion of
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Figure 6.3 The PO net operating on clusters of SAND and LANE, yielding the migration
response SANE.

migration responses of course depends on the noise level; when noise
is turned down, correspondingly fewer migration responses are
obtained. The qualitative behavior of the PO net, however, does not
depend on the exact rules of letter cluster activation. I tried a number
of schemes for activating letter clusters, and all yielded a strong
surround-similarity effect,

6.2.3.1 Migrations Involving Orthographically Irregular Strings

Migrations occur when letters are embedded in orthographically irreg-
ular strings. Treisman and Souther (1986) have studied triconsonantal
(CCC) strings such as SXT and PRN. McClelland and Mozer (1986)
have studied strings composed of a letter and three identical digits
(letter-in-digit or LID strings) such as 8666 and L777. No surround-
similarity effect is obtained for LID strings, however: S666 and L777
yield as many migrations as $666 and L666.

Consider what happens in MORSEL when an LID string is
presented. The pattern of activation at the letter-cluster level is fairly
sparse. There may be units that detect single digits, small clusters of
digits, and single letters, but there would be few, if any, that directly



106 PSYCHOLOGICAL PHENOMENA EXPLAINED BY MORSEL

detect combinations of letters and digits; for example, the string S666
will be encoded by units such as **§, ** g, and 66*, but there are no
units such as $66 or *S_6. When two LID strings are presented, say
8666 and L777, and attention (s unfocused, the units **S and *+L will
both become active, but it will be impossible to correctly determine
which letter appeared in which location, or for that matter, which
letter appeared with which surround. Consequently, migrations will
result. Similarity of the digit surrounds is irrelevant because the
letters are not encoded with respect to their surrounds. Thus, no sur-
round similarity effect should be obtained; S666 and 1,777 will yield as
many migrations as $666 and L666.

On this account, migrations of letters in digits should be at least as
frequent as migrations of letters in words, yet the results of McClel-
land and Mozer indicate otherwise. However, McClelland and Mozer
used longer stimulus exposure durations on LID trials, affording
greater opportunity to focus attention on one or both LID strings.
McClelland and Mozer mention a pilot study in which exposure dura-
tions were matched for LID and word stimuli, and the results there
indicated at least as many migrations in LID strings as in words.
Also, Treisman and Souther’s experiments indicate that migrations
among orthographically itregular CCC strings are as frequent as
among orthographically regular consonant-vowel-consonant strings.

6.2.3.2 Effects of Lexical Status

McClelland and Mozer have observed effects of lexical status. Migra-
tions are more likely when the target string is an orthographically reg-
ular nonword (a pseudoword) than when it is a word, and when the
potential migration responses are words than when they are pseudo-
words. In contrast, Treisman and Souther found less impact of the
lexical status of strings.

MORSEL provides an explanation of these lexical effects in terms
of the PO net’s semlex units. Semlex units help the clusters of a word
to cohere and form a mutually supportive coalition, but semlex units
do not help clusters of a pseudoword. Consequently, when presented
with a pattern of letter-cluster activity that is equally consistent with a
word and a pseudoword, the PO net will select the word. Due to this
preference, migrations forming words are relatively more likely, espe-
cially when the target is a pseudoword.
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Assuming that the influence of the semiex units can be modulated
by higher level processes (see section 3.3.3), their effect on pull out is
adjustable. With the semlex units suppressed entirely, MORSEL’s
behavior is identical on words and pseudowords. This allows MOR-
SEL to account for the smaller impact of lexical status found by Treis-
man and Souther, although it is necessary to understand why observers
in Treisman and Souther’s experiments "shut off" their lexical
knowledge. My suspicion is that the answer lies in the particular
stimuli used by Treisman and Souther—three-letter words, all of
which had the same center letter. Given the predictability of these
strings (i.e., observers knew that only the two outer letters differed
from one string to the next), observers may have treated words and
pseudowords alike--as strings of letters rather than as meaningful
units—thereby minimizing the role of lexical knowledge.

6.2.4 Letter-Cluster Migration Errors

Joint migrations of several letters also occur. Consider the following
phrases from Wilkins (cited in Woodworth, 1938, p. 744):

PSYCHMENT WOODSON TALDER
DEPARTOLOGY WILROW POWCUM

In brief presentations, observers often misread these phrases in their
more familiar form. Apparently, letter clusters belonging to one word
provide perceptual evidence for the neighboring word. I have also
collected a number of similar errors from my everyday experience,
Though anecdotal, these errors are somewhat more convincing
because, unlike the above examples, there were no apparent scmantic
constraints that might have biased the interpretation. For instance, in
reading the text

UNFORTUNATELY, HELMHOLTZ WAS UNABLE TO ...
THEORETICALLY REPRESENT THE NONSTATIONARY ...

I misread UNABLE as.UNSTABLE; presumably the ST came from STA-
TIONARY. The illusion was quite convincing and can hardly be attri-
buted to semantic constraints. Interestingly, and pethaps not mere
coincidence, the context in which the ST is embedded—an N to the left
and an A to the right—is identical in NONSTATIONARY and
UNSTABLE. Other cases from my collection are similar in this regard:
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DEAR ANN LANDERS: FOR THREE YEARS
{ HAVE BEEN EMPLOYED IN A LARGE OFF-
ICE. 1ENJOY MY JOB AND THE PEOPLE [
WORK WITH...

EMPLOYED was misread as ENJOYED, as if the NJ migrated to replace
MPL. (Of course, this could also be regarded as a migration of the
entire word ENJOY.)

Although letter—cluster migrations seem quite different in nature
than single-letter migrations, MORSEL produces both sorts of error by
the same mechanism: the PO net acting to recombine letter clusters
from several simultaneously active words. To illustrate this
phenomenon, a simulation was conducted using only the PO net. All
clusters of the strings PSYCHMENT, DEPARTOLOGY, PSYCHOLOGY,
and DEPARTMENT were included, but semlex units existed only for
the latter two words. The BLIRNET letter-cluster units were manually
assigned activation levels: the clusters of PSYCHMENT DEPARTOL-
OGY were set to 1.0, all other clusters 0.0. Gaussian noise was then
added to the activity of each BLIRNET letter-cluster unit. Figure 6.4
shows one run of the PO net on this configuration in which DEPART-
MENT is read out.

Even without the semlex units, MORSEL. may have a sirong bias
toward recombining morphemes based on the set of letter-cluster units
included in the model. In the simulation above, all relevant clusters
were included. However, if the simulation were based on only the
most frequent letter clusters of English, say the top 6,000, the
representation of PEPARTMENT is more complete than that of DEPAR-
TOLOGY. Eight clusters in the top 6,000 code the junction between
DPEPART and MENT (R_ME, RT_E, RTM, T_EN, TM_N, TME, A_TM,
AR_M), whereas only four code the junction between DEPART and
OLOGY (A_TO, AR O, TO_O, TOL). Thus, based on English orthogra-
phy, there is more glue to tie DEPART to MENT than to OLOGY. Simu-
lation studies with only the most frequent letter clusters and excluding
semlex units support this conclusion. It remains an experimentally
untested prediction, however, whether orthographic regularity influ-
ences recombinations in human observers.

6.2.5 Word Migration Errors

In brief multiword displays, observers may identify a word correctly
without being able to localize it (Allport, 1977; Mozer, 1983). This
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Figure 6.4 Pull out of DEPARTMENT from PSYCHMENT DEPARTOLOGY.
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corresponds to the subjective experience of glancing at a page of text
and seeing a word, but being unsure where the word appeared; or of
substituting a word from elsewhere on the page into a line being read.
(Several examples of this phenomenon were given in section 6.1.1.}
Such word migration errors arise in MORSEL because BLIRNET regis-
ters the identity of a word, but not its location. Unless attention is
focused, the spatial source of the letter cluster activity may be
apprehended incorrectly.

6.2.6 Illusory Conjunction Errors

Treisman and Schmidt (1982) have shown that when attention is over-
loaded or diverted, attributes of several items in a display may be
wrongly combined, giving rise to illusory conjunctions of the attri-
butes. For example, if observers are shown a display containing a
blue O on the left, a red X in the center, and a green T on the right, they
may incorrectly report having seen a green O in the center.

The general framework of MORSEL, which can be viewed as an
elaboration of Treisman’s feature-integration theory (see section 5.2),
allows the possibility of illusory conjunctions in the following
manner. If attention is unfocused, objects everywhere in the visual
field will be analyzed automatically and in parailel by each processing
module. The modules compute what feature-integration theory might
call "features" of the display (which I call “attributes," to distinguish
them from the entities represented by individual processing units). At
the top layer of each module, many attributes are active. If the attri-
butes are about equally active, the PO net will pull out an attribute at
random from each module. Thus, random conjunctions of attributes
may arise; the PO net may select the color green from the color detec-
tion module, the letter O from BLIRNET, and the center location from
information provided by the attentional system. These aitributes will
then be bound together and transferred to the STM, yielding an
illusory conjunction,

6.2.6.1 MORSEL and Feature-Integration Theory

As a possible elaboration of feature-integration theory, MORSEL helps
to specify several details of the theory. First, MORSEL establishes a
mechanistic account of how attention is used to bind features to spatial
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locations, and what the binding consists of. Second, feature-
infegration theory claims only that features are registered automati-
cally and in parallel; MORSEL proposes that there are capacity limita-
tions as well. Third, feature-integration theory makes no prediction as
to how much spatial information is maintained by a processing
module. MORSEL suggests that each module factors out al/ spatial
information except for local relations among features, e.g., that an I
appeared beside an N,

MORSEL goes against the grain of feature-integration theory in
other respects, however. First, the features of feature-integration
theory are assumed to be primitive, yet MORSEL’s modules are able to
compute abstract, experience-dependent attributes of a visual
stimulus.  Second, the features of feature-integration theory are
registered preattentively whereas MORSEL'’s attributes are registered
beyond the point of attentional filtering. (See Hillyard, Munte, &
Neville, 1985, for a summary of evidence from event-related potential
studies favoring the claims of MORSEL in this regard.) Third, MOR-
SEL suggests that illusory conjunctions between dimensions, such as
the color of one stimulus coupled with the shape of another, must be
distinguished from iflusory conjunctions within a dimension, such as
the underbar of an L merging with an F to form an E. In MORSEL,
between-dimension conjunctions arise at the level of pull out, as
described above for colored letters; within-dimension conjunctions,
examples of which are feature-perturbation and letter-transposition
errors, occur inside a processing module. It may thus be a mistake to
try accounting for within-dimension conjunctions in the framework of
fea;ure-integration theory (e.g., Treisman & Gelade, 1980, Experiment
4).

2 Experimental evidence supports the notion that within- and between-dimension con-
junctions are different in nature. Between-dimension conjunctions are insensitive to
the distance among items and do not produce "ghost” images (Treisman & Schmidr,
1982), whereas within-dimension conjunctions are more frequent when items are
close together (Wolford & Shum, 1980) and often leave copies of an attribute behind
when the attribute migrates (Prinzmetal, 1981). MORSEL is consistent with this dicho-
tomy. The insensitivity to distance of between-dimension conjunctions is due to the
fact that all spatial information is factored out by BLIRNET and other processing
modules; thus, the activity pattern at the output of each module does not depend on
whether items are adjacent or far apart. Within-dimension conjunctions, however, are
sensitive to distance: interactions take place within a module only when two items lie
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6.2.6.2 Husory Conjunctions Involving High-Level Attributes

MORSEL predicts illusory conjunctions beyond those studied by
Treisman and Schmidt (1982), involving not just letters but words. If
a display contains several colored words printed in different cases,
MORSEL may incorrectly combine the outputs of BLIRNET, the color
detection module, and the letter-case detection module. T.awrence
(1971) has reported such a recombination involving the identity and
case of visual words presented successively in the same location.
Although I know of no direct evidence for simultaneously presented
words, there is the suggestive finding that letters of a word tend to
cohere in the formation of illusory conjunctions of identity and color,
but letters of a nonword do not (Prinzmetal & Millis-Wright, 1984).
Anecdotally, I have a pertinent story in this regard. 1 was editing a
typed draft of a paper containing the sequence ONE CONTEXT WITH
RESPONSES, [ crossed out WITH and wrote in AGAINST by hand in red
ink. A moment later I glanced back at the page and saw, quite posi-
tively and to my great surprise, AGAINST printed in black type and in
the location where CONTEXT should have been.

Another sort of illusory conjunction involving high-level attributes
has been reported by Virzi and Egeth (1984). They asked observers to
report the identity and the color of adjectives displayed in different
colors of ink, say, the word BROWN in red ink and HEAVY in green
ink. Observers sometimnes saw the word RED in green ink or HEAVY
in brown ink. MORSEL has the potential of producing such cross-
dimensional confusions via the semlex units of the PO net. Semlex
units representing a meaning like "redness” could be interconnected
with units for the word RED and the color red. Activation from the
word RED flows to the semlex units, and in turn flows back down to
the units for the color red, and vice versa, allowing a word identity to
transform into a color and a color into a word identity.

in a single unit's spatially restricted receptive field. The absence of "ghost” images in
the formation of between-dimensien conjunctions ¢ould be due to the PO net suppress-
ing the activity of attributes as they are selected to prevent them from being pulled out
a second time (see section 5.4), Within-dimension conjunctions, however, allow for
features of one item being copied to another item: Activation of one unit by a given
feature does not preclude the activation of another unit by the same feature.
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6.2.7 Similarity-Based Interference Effects

Studies have shown that interference among display items in a recog-
nition task is a function of the similarity of the items (Estes, 1982;
Gardner, 1973; Krumhansl & Thomas, 1977). Estes, for example,
presented friads of letters in an unpredictable location, and instructed
observers to report the center letter (the targer). When the target was
visually similar to the outer letters (the distractors), accuracy of target
identification was significantly reduced. Estes concludes that the
effect of similarity on discriminability can be attributed to a poorer
encoding of target and distractor locations when target and distractors
are similar and the target is imperfectly identified,

MORSEL shows similarity effects for precisely this reason. Com-
pare MORSEL'’s ability to recognize a target that is visually similar to
the distractors, say, I with distractors L and T (forming the triad LIT),
and one that is dissimilar, say, A with L and T (LAT). BLIRNET will
produce certain letter-cluster activations that support the correct
responses, e.g., with target I, *L1, #*_I, I_** Other activations support
one of the distractors in the center position, e.g., ** L, T_** These
spurious activations are caused in part by the presence of L. and T in
the display and the fact that BLIRNET often transposes the ordering of
letters (see section 2.5.1). Additionally, the target I will contribute to
these spurious activations because of its similarity to the distractors
and the fact that BLIRNET often activates clusters with visually simi-
lar letters (see section 2.5.1). Due to this second source, spurious
activity supporting L or T in the center position will be stronger for
LIT than LAT. Simulations of BLIRNET have shown this to be the
case: the rafio of activations supporting a distractor in the center posi-
tion to those supporting the target was .80 for LIT but only .32 for
LAT. Assuming that the probability of the PO net selecting a particu-
lar letter is related to these ratios (e.g., Luce, 1959), perception of L or
T in the center position should be more likely with LIT, and veridical
perception of the target less likely.

As a further demonstration, six pairs of words were selected from
BLIRNET’s training corpus: LINE-LANE, LISTING-LASTING, LITER-
LATER, FIRES-FARES, FINS-FANS, and FIST-FASTER. The words all
begin with L or F and the two words in each pair are pretty much
identical except that one contains I in the second position (the 7 words)
and the other A (the A words). If similarity indeed has a detrimental
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effect, perception of the first letter in each word should be impaired
for I-words relative to A-words because L and F are similar to T but not
to A. The impairment should take the form of the L or F being con-
fused with visually similar letters (which I will call the alternatives).
For words beginning with L, the alternatives considered were E, F, and
T; for F, the alternatives were E, L, and T. Each word was presented in
three random locations; the total activity of clusters supporting the
alternatives was computed on each presentation. On average, this
activity was .828 for an I word but only .412 for an A word, a reliable
difference (F(1,17)=9.29, p<.01), indicating that the first letters of 1-
words should be confused more often than A-words. This result rein-
forces the LIT-LAT demonstration, and seems to be in accord with
experimental reports of similarity-based interference effects.

6.2.7.1 Between-String Similarity

The human and simulation experiments discussed hitherto involve
similarity of letters within a string. Similarity-based interference also
arises between two strings. In an unpublished experiment by Jay
McClelland and myself, we presented pairs of four-letter words and
postcued observers to report one of the words. Two conditions were
run; similar surround and different surround. Words in the similar-
surround condition shared two letters in common, e.g., SOLE and SITE,
and in the different-surround condition no letters in common, e.g.,
SOLE and WITH, Letters of the two words could not recombine to
form another word; thus, migration errors were highly unlikely, and in
fact occurred on fewer than 1% of the trials in either condition, con-
trasting with our earlier studies (McClelland & Mozer, 1986) in which
surround similarity resulted in an increase in migration errors.
Nonetheless, surround similarity did result in a significant increase in
intrusion errors, ie., errors containing letters from neither of the
presented words (see also Mozer, 1983, and McClelland & Mozer,
1986, for supporting evidence). Although it seems perfectly natural
that similar words are confusable, and that when words are confusable
migration errors may occur because it is difficult to keep track of
which letters appeared in which word, it is not obvious why confusa-
bility should lead to intrusion errors.

MORSEL offers a plausible explanation for these intrusion errors.
Suppose that two words are presented to MORSEL, SOLE and SITE,
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and attention is unfocused. The PO net must select one of the two
words, say that it chooses SITE. Once this word has been transferred
to short-term memory, the other word must be recovered. What is to
prevent the PO net from selecting SITE once again? If attention can be
forcefully shifted to SOLE, there is no problem because activations
from SITE will be relatively inhibited. However, if attention cannof be
focused, as when the words are presented only briefly and the low-
level feature information has vanished, some other mechanism is
necessary to avoid repeated pull-out of the same item. I therefore sug-
gested in section 5.4 that once a pattern of activation has been
exiracted by the PO net, activity of the selected PO units is slightly
inhibited. Complete inhibition is unnecessary, and undesirable, but
partial inhibition should be sufficient to allow activations from other
items to come through. Retumning to the example, because the pattern
of activation produced by SITE overlaps with that produced by SOLE,
suppression of SITE will also suppress SOLE. Consequently, the
signal/noise ratio for SOLE decreases and intrusions become more
probable. If the word pulled out first had liftle similarity to SOLE,
e.g., WITH, SOLE would not have suffered as a result.

How does MORSEL avoid both within- and between-string
similarity-based interference effects? The answer is simple: by focus-
ing attention: serially on letters in the within-string case, or on words
in the between-string case. Human data shows that attentional
involvement is required to veridically perceive similar items (e.g.,
Connor, 1972; Mozer, 1989).

6.2.8 Type-Token Errors

At an extreme degree of similarity, namely when several objects in a
display are identical, perception appears to be further impaired:
Observers have trouble detecting the repetitions (Frick, 1987; Kanw-
isher, 1990; Mozer, 1989; Schneider & Shiffrin, 1977, Experiment 3;
for a related effect in successive presentations see Kanwisher, 1987,
and Kanwisher & Potter, 1989, 1990). In my experiments, observers
were shown brief multi-letter displays and were asked to count the
number of itemns that are members of a target set. Estimates are lower
when the display contains repetitions of a single target letter than
when it contains several distinct target letters. This finding, called a
homogeneity effect, indicates that observers have difficulty in distin-
guishing two instances (fokens) of the same category (type).
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Two qualitatively different homogeneity effects were studied. A
form homogeneity effect was obtained when displays contained
between two and nine letters arranged in a row and observers were
simply asked to report the total number of letters. Estimates were
lower when a single letter was repeated than when all the letters were
distinct. This effect occurred only when the repeated letters shared a
common visual form, and depended on the spatial proximity and adja-
cency of the letters. Thus, an effect was observed for displays like
ddddor DDDD, but not dDdDdDdDd. In a second set of
experiments, an identity homogeneity effect was obtained when
observers were required to identify, not just count, stimulus items.
Pairs of vowels were presented, one printed in uppercase and the other
in lowercase, and observers were instructed to report the number of As
and Es that appeared. On some trials, two instances of the same target
letter were presented—A and @, or E and ¢; on other trials, one
instance of each target letter was presented—A and e, or £ and a.
(The vowels were embedded in a context of consonant letters, but this
context did not influence performance.) Estimates were lower when
the target was repeated than when two distinct targets were shown.
This effect occurred when repeated letters shared a common identity,
despite the lack of visual similarity, and was not critically dependent
on the adjacency of repeated letters. Thus, an effect was observed for
the two Es in a display like peb CER.

As with the other errors reported in this section, the homogeneity
effect appears to arise from the failure to accurately encode location
information. If location information is lost, the residual representation
is insufficient to distinguish one token from another. Difficulty in
detecting repetitions of an object is an inevitable consequence. The
critical question addressed by these experiments is at what stage of
processing location information is lost. The form homogeneity effect
appears lo arise at an early stage where the stimulus display is
encoded in terms of visual form, while the identity homogeneity effect
appears to arise at a late stage where the display is encoded in terms of
letter identities.

BLIRNET provides a framework in which these homogeneity
effects can be interpreted (which is not surprising, given that the
experiments were motivated by the model in the first place). The
form homogeneity effect can arise via interactions in the early layers
of BLIRNET. As BLIRNET transforms elementary features info more
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complex, higher-order features, features from nearby regions are com-
bined. If two objects in close proximity have the same form, their
features may be collapsed together and their distinct existence is
thereby discarded. Another way of arguing this is to point to the
results showing that BLIRNET exhibits local location uncertainty. For
instance, when a word like BORED is presented, both the BRO and BOR
clusters may become active (section 2.5.1), indicating that the R and
the O were detected but there was some uncertainty as to their precise
locations. {See sections 6.2.1 and 6.2.7 for further evidence.) If each
letter can be localized only approximately, then the activations from
two identical letters in close proximity could be interpreted as provid-
ing evidence for the existence of just a single letter,

The identity homogeneity effect arises at the output of BLIRNET.
BLIRNET and other processing modules do not encode the absolute
retinal location of the attributes that they detect. For example, letter-
cluster units indicate the relative order of letters within a string but not
the string’s location in the visual field. Further, activity of a letter-
cluster unit specifies only the presence of the cluster, not the number
of tokens present, In the case of processing lowercase and uppercase
As simultaneously, both contribute to the activation of a unit like *A*,
but activity of *A* does not indicate whether one or two As was
present. This difficulty will arise regardless of the locations of the
two As, because evidence from the entire visual field converges on the
letter-cluster units. Consequently, MORSEL accounts for the finding
that proximity is irrelevant for the identity homogeneity effect.

How are repetitions of an item ever veridically perceived if the loss
of location information is intrinsic to BLIRNET? Both form and iden-
tity homogeneity effects can be ovércome through attentional process-
ing. By focusing attention on each display item sequentially, MOR-
SEL is able to create a unique token in STM for each item by binding
its location to its identity, Further experiments by Mozer (1989) sup-
port the notion that the homogeneity effect is tied to limitations in
attentional processing: The effect is obtained when performance is
limited by attentional manipulations, but not when performance is
limited by stimulus quality degradation.

6.3 Other Perceptual and Attentional Phenomena

I now describe other perceptual and attentional phenomena for which
MORSEL can offer at least a qualitative explanation.
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6.3.1 Visual Search

In visual search experiments, observers are asked to detect particular
target stimuli in a display containing irrelevant distractors. The task
may involve determining which of several targets is present, for exam-
ple, a'T or F among Os (Shiffrin & Gardner, 1972), or whether a target
appears at all, for example, whether a red X is present in a display of
colored letters (Treisman & Gelade, 1980). The fundamental empiri-
cal question in these experiments is how search efficiency—say,
response time—is affected by the nature of the targets and distractors.
Response time may be independent of the display size, suggesting a
parallel search; or the time may be proportional to the display size,
suggesting a serial search. Many other possibilities exist and are actu-
ally observed, including sublinear and supralinear relations between
response time and display size (Pashler, 1987a; Wolfe, Cave, & Fran-
zel, 1989),

To examine how MORSEL would respond in this paradigm, con-
sider the task of searching for a T in a display of vertical and horizon-
tal bars. Presenting the display causes a pattern of activity on
MORSEL’s retina. This activity propagates through BLIRNET, produc-
ing activities in the letter-cluster units. If the T is present, the *T* unit
will become active. But the vertical and horizontal bars also may
cause some activation of the *1* unit. Hence, the activity level of *T#
may be insufficient to determine whether the T was actually present.
This is a basic limitation of BLIRNET: if display items are similar
and/or if items are closely spaced, interactions within BLIRNET will
produce spurious activations (see sections 6.2.1 and 6.2.7 for illustra-
tions). This prevents MORSEL from using a fully parallel search. The
alternative is for MORSEL to direct attention to individual items or to
small groups of itemns in order to limit crosstalk within BLIRNET.

This implicates the AM in performing visual search. How will the
AM determine where to focus? Higher levels of cognition could dic-
tate a systematic, sequential scan of the display through the direct
top-down inputs to the AM. One might call this a brute force strategy.
But a better strategy is available to the AM in some circumstances.
Remember that higher levels of cognition can control the focus of
attention not only with direct inputs to the AM, but also by modulating
which elementary feature maps activate the AM. If the target
possesses elementary features that make it highly discriminable from
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the distractors, higher levels of cognition can predicate selection on
these critical features, An example of this intelligent filtering strategy
was given in chapter 4: the AM was able to pick out an X from a set of
distractors when higher levels of cognition selectively suppressed all
but the 45° and 135° line-segment feature maps. Woife et al. (1989)
and Treisman (1990) have recently sketched models based on a
method much like the intelligent filtering strategy. This strategy does
not allow for selection on the basis of relationships among features or
on the distribution of features within an object, but only on the basis
of whether a feature or combination of features is present in the
object.

In the case of searching for a T among horizontal and vertical bars,
the relevant elementary features are the 0° and 90° line segments.
Basing sclection on these features, high levels of cognition can
achieve an input to the AM like that shown in the top frame of figure
6.5. This frame depicts an input consisting of six items, the T being in
the fifth position. The AM selects the T because its input strength is
greatest.3 The AM requires 16 iferations to completely suppress the
distractors. The selection time decreases slightly as the number of
display items decreases: when four items are presented, the AM
requires 14 iterations, and when two items are presented, the AM
requires only 12 iterations. This behavior is robust to different target
locations and inter- and intra-stimulus arrangements. It is a conse-
quence of the AM activation rule: Inhibition in the AM is proportional
to the average activity of all active units. The more distractor stimuli
present in the display, the lower the average activity will be and hence
the lower the inhibition and the slower the AM will be to select one
item.*

The nature of the target and distractors dictates the type of process-
ing that will be required in visual search. As indicated in the previous
discussion, the task can be performed in one of three ways:

3 In this example, the input strength of each item is confounded with the number of
active units composing the item. When the two factors are teased apart, it does indeed
turn out that the input strength is the critical variable: if the T is replaced by a vertical
or horizontal bar with twice the input strength, performance of the AM is unaltered.

4 The AM was not designed with this property in mind. The only design criterion was
to construct a mechanism that worked reliably, On revaluation, however, it is not
clear how one could build a mechanism that did not exhibit this property.
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Extemal Inpat to the AM

AM, iteration 4

AM, iteration §
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AM, iteration 12

AM, iteration 14

AM. iteration 16

Figure 6.5 The operation of the AM when a T is presented in a background of horizon-
tal and vertical line segments.

1. If the items in the display are not densely packed and if the tar-
get is highly dissimilar from all distractors, then BLIRNET
should be capable of detecting the target without involvement
of the AM because interference from the distractors will be
negligible. Call this strategy parallel processing.

2. Otherwise, if the target can be distinguished from distractors by
the presence of some clementary feature or combination of
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elementary features, higher levels of cognition can direct the
AM to these features and thereby filter out the distractors, Call
this strategy pop out.

3. Otherwise, serial attentional search is mandated. Call this stra-
tegy serial search.

If the parallel processing strategy applies, response time is indepen-
dent of display size. I the pop-out strategy applies, response time is
fairly independent of display size; the AM requires only one settling,
no matter how many items are in the display, but the settling time is
somewhat influenced by display size, as the example above illustrated.
For the serial search strategy, response time is highly dependent on
display size, because the AM must settle once for each item or cluster
of items in the display.’

To account for human visual search data, it is first necessary to
expand upen the conditions that allow the AM to select the target via
the pop-out strategy. In figure 6.5, the target is highly distinctive in
the sense that the net input to the AM supporting the target location is
twice that of any of the distractor locations. This ratio of
target:distractor strength is critical because it is a measure of the ease
with which the AM can pick out the target. If the target is not suffi-
ciently distinctive, the serial-search strategy will be required. A simu-
lation experiment was conducted to validate this claim. The AM was
given the same input as in figure 6.5, with Gaussian noise added. The
noise value at each location had zero mean and a standard deviation
equal fo the input strength at that location multiplied by a scaling fac-
tor (the noise level). The noise level was varied from 0.0 to 1.0. The
noise could correspond to intrinsic randomness in the system, or it
might be viewed as a manipuiation to moderate the target:distractor
strength. The stronger the noise is, the more the data-driven inputs to
the AM are masked. To vary the target:distractor strength more
directly, simulations were run not only with the input of figure 6.5,
which has a 6:3 strength ratio, but similar displays with 5:3 and 4:3
ratios.

5 Even for serial search, processing need not be serial on an item-by-item basis, The
AM might focus on clusters of items sufficiently smalil to allow for BLIRNET to pro-
cess all items in a cluster in paraliel,
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Figure 6.6 shows the results of 100 replications of each condition.
The AM was judged to have succeeded in selecting the target if, upon
reaching equilibrium, the mean activity of the region around the target
was above .9 and the mean activity of the region around each distrac-
tor was below .1. There are two ways of looking at this figure. First,
for a fixed noise level, one can see that the AM is more likely to
succeed if the target:distractor strength is higher. Second, for a partic-
ular target:distractor strength, the AM is more likely to succeed as the
noise level decreases. The same pattern of results is observed for
other display sizes and other target-distractor sets. The results
strongly indicate that as the target becomes less distinctive, the AM
becomes unable to reliably detect the target among distraciors. The
detection difficulty is a continuous function of the relative target
strength. Thus, it is not the case that the model must respond either as
if it were in pop-out mode or serial-search mode. As the target
becomes less distinctive, serial search behavior becomes more likely,
causing response time to become increasingly bound to display size.

This general picture is in agreement with psychological data. Dun-
can and Humphreys (1989) note that there is no clear dichotomy
between serial and parallel search modes in the literature, as MORSEL
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0.0 Q.2 0.4 0.6 .8 1.0
Noise Level

Figure 6.6 Percent of trials in which the AM successfully selects a target item among
five distractors, as a function of the target:.distractor strength (6:3, 5:3, and 4:3) and
the noise level.
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would predict from the gradual transition between situations where the
AM can reliably select the target on the basis of elementary features
(pop out} and where serial search is required. Even in experiments
where behavior is interpreted as parallel search, response time does
increase slightly with display size (say, 5 msec per item). In MOR-
SEL., this corresponds to the pop-out mode, where the AM can success-
fully pick out the target, but the settling time is influenced by display
size. To elaborate this general picture, I now survey specific results in
the literature and relate them to the framework provided by MORSEL,

If targets can be distinguished from distractors on the basis of an
elementary feature, search is generally easy (Beck & Ambler, 1973;
Bergen & Julesz, 1983; Treisman & Gelade, 1980). For instance,
Beck and Ambler found a small effect of display size when searching
for a tilted T among upright Ts. In this case, the target has strokes of a
unique orientation, allowing attentional selection on the basis of these
strokes, When searching for an L among upright Ts, however, a large
effect of display size was observed. An L and a T contain the same
elementary features—a horizontal and a vertical line segment—which
makes them cquivalent as far as attentional selection is concerned,
because attention cannot be guided by information about the relation-
ships among features of an object.

That targets contain a unique elementary feature is not sufficient for
cagy search (Treisman & Gormican, 1988). For instance, search for a
vertical line among lines tilted 18° to the left is difficult, but search
for a vertical line among horizontal lines is easy; search for a straight
line among arcs of low curvature is difficult, but search for a straight
line among semi-circles is easy. Thus, the distinctiveness of target
features is as critical as their uniqueness. These results can be
explained in MORSEL by postulating some inaccuracy in the registra-
tion of elementary features. If 18° tilted line segments partially
activate the vertical-line detectors, and the AM is asked to select on
the basis of activity from the vertical-line feature map, the distractors
gach provide some input. Consequently, the relative target strength
may be insufficient to achieve pop out.’

6 Although I have described the broad tuning of feature detectors as an inaccuracy in
feature registration, it is precisely what is required for the veridical representation of
feature values with a limited number of detectors (Hinton, McClelland, & Rumekhart,
1986). Unfortunately for the AM, this type of coarse-coded representation is often in-
compatible with the pop-out strategy.



124 PSYCHOLOGICAL PHENOMENA EXPLAINED BY MORSEL

Treisman and Souther (1985) and Treisman and Gormican (1988)
have observed asymmetries in search that can also be accounted for in
this framework. Search for the presence of a feature is easier than
search for its absence, a direct implication of MORSEL. More interest-
ingly, while search for a vertical line among tilted ones can be hard,
search for a tilted line among verticals is easy. This is compatible
with MORSEL by assuming an asymmetry in the feature registration
process such that tilted lines produce some partial activity in the verti-
cal detector, but not vice versa.

Treisman and Gelade (1980) have suggested a qualitative distinc-
tion between search for single features and search for conjunctions of
feature, They found that search for an X among colored O is casy, as
is search for a blue shape among red Xs and 0s, but search for a blue X
among red Xs and blue O is difficult, Although MORSEL suggests no
qualitative difference between single feature and conjunction search
per se, the model does predict that pop out should be more difficult for
conjunction search. When searching for a blue shape among red
shapes, higher levels of cognition should allow activity from the
"blue" feature map to propagate to the AM. The location of the target
will receive strong input, whereas the locations of the distractors will
receive none. When searching for a blue X among red Xs and blue Os,
however, higher levels of cognition should allow activity from, say,
the 45° and 135° line-segment feature maps, as well as the "blue”
feature map, to propagate to the AM. The location of the target will
receive about twice the input as the locations of the distractors. Thus,
the target:distractor strength is 1:0 for feature search but only 2:1 for
conjunction search, a large quantitative difference. With some noise
in the activation process, the relative target strength may be insuffi-
cient for pop out in conjunctive search (sec figure 6.6), although
feature search will be far more noise resistant.

This argument implies that in situations where the features are
highly distinctive, pop out may be possible for conjunction search
because highly distinctive features will increase the signal strength
relative to the noise. Indeed, Wolfe et al, (1989) have demonstrated
exactly this result: Search is easy for conjunctions of color and form,
color and orientation, and color and size when stimulus salience is
increased over the displays used by Treisman and Gelade (1980).
Wolfe et al. conclude that the accumulation of results showing easy
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search for feature conjunctions (Egeth, Virzi, & Garbart, 1984; Hum-
phreys, Quinlan, & Riddoch, 1989; Nakayama & Silverman, 1986;
Pashler, 1987b; Steinman, 1987; Treisman, 1988) may indicate that
easy search is the general rule not the exception. Sketching an atten-
tional model that receives input much like the AM, Wolfe et al.
proceed to test a further prediction: that search for a conjunction of
three features can be easier than a conjunction of two features when
the distractors share only ome feature with the target. The
target:distractor strength is 3:1 in the triple conjunction condition
versus 2:1 for the double conjunction. The greater signal strength
facilitates pop out.

The theoretical perspective offered by MORSEL is consistent with
the conclusions reached by Wolfe et al. and Duncan and Humphreys
(1989). Wolfe et al. point to stimulus salience as being a critical fac-
tor in determining ease of search; Duncan and Humphreys point to the
similarity of targets to distractors. Increasing salience and decreasing
similarity has the effect of amplifying the relative target strength,
making the pop-out strategy more viable.” MORSEL goes beyond the
statement that target-distractor similarity affects search efficiency in
claiming that similarity can have an effect at several distinct loci in
the system: in the initial registration of features on MORSEL’s retina,

7 Duncan and Humphreys also conclude that search efficiency improves with in-
creased similarity of distractors, to the extent that target-distractor similarity is high.
In MORSEL, there are two ways in which distractor similarity can influence perfor-
mance. First, if the distractors are nearly identical, they form a homogeneous back-
ground, and preattentive texture segregation processes could distinguish the target
from the background. As discussed in chapter 4, the results of texture segregation
serve as another input to the AM, biasing selection to locations where inhomogeneities
occur and allowing pep-out of the target. A second way in which distractor similarity
can influence performance is via BLIRNET. According to MORSEL, when target-
distractor similarity is high, the pop-out strategy is generally unsuitable and a serial-
search strategy is necessary. When serial search is performed, response time depends
on what size cluster of items can be processed at once. If BLIRNET can precess many
items in parallel, the clusters can be large and scarch will be fast, The number of
items that BLIRNET can process simultaneously depends in turn on the similarity of
the distractors. The more homogeneous the distractors are, the less spurious activity
they will produce in BLIRNET, and the easier it wiil be to detect the presence of the
target. Consequently, with homogenecous distractors, it will be possible to process
larger clusters of items, and search efficiency is increased.
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in the difficulty of attentional selection, in the amount of interference
in BLIRNET, and possibly even in the difficulty of readout from the
PO net. It appears that the visual search data depend on many com-
ponents of the model, and worse yet, on interactions among com-
ponents. If this view is correct, all hope of uncovering a simple
account of the visual search data should be abandoned; instead,
detailed simulations of computational models like MORSEL must be
conducted.

6.3.2 Facilitatory Effect of Redundant Targets

Although the type-token experiments described in section 6.2.8 indi-
cate that observers have difficulty detecting repetitions of a target, a
facilitatory effect of repetition can be obtained nonetheless. When
observers are required to detect a target letter in an array of letters,
detection accuracy improves with the number of instances of the target
presented (Bjork & Estes, 1971; Eriksen, 1966; Friksen & {.appin,
1965; van der Heijden, 1975).

MORSEL also benefits from target redundancy. When multiple tar-
gets are processed simultaneously, each contributes to the activation
of the units that signal the target’s presence. Multiple sources of
information help enhance the signal-to-noise ratio. To demonstrate
this behavior, I ran a simulation experiment using the version of BLIR-
NET trained to recognize individual letters. Either one, two, or three
instances of a target letter were presented at a time. No distractors
were present. The identity and location(s) of the target were selected
at random, except that spatial overlap of letters was prohibited. Two
hundred trials were run in each condition. Table 6.1 shows the out-
come of this simulation. The second column contains the mean
activity of the target letter, The third column contains the median
ratio of target-letter activity to the largest of the other 25 letter

Table 6.1 Redundant Target Simulation Experiment

number of mean activity ratio of target to
targets of target spurious cluster activity
1 582 3.11
2 683 4.00
3 732 447
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activities; this is an indication of the relative signal strength. By both
measures, performance improves with the number of targf:ts.8

6.3.3 Word Superiority Effect

Letters are better perceived when they are part of a word or pseudo-
word than when they are presented in isolation or in a random letter
string (Reicher, 1969; McClelland & Johnston, 1977; Wheeler, 1970).
In Reicher’s seminal study of this phenomenon, known as the word
superiority effect (WSE), observers were shown pattern-masked target
letters embedded in a number of different contexts and were required
to make a forced-choice response between two alternative letters. For
instance, WEAR might be presented followed by a cue to judge
whether the last letter was an R or a K; on another trial, the single
letter R might be presented followed by the same response alterna-
tives. Performance is more accurate for the R in WEAR than for the R
presented alone,

The WSE depends on visual conditions. The effect is largest under
conditions in which a distinct, high-contrast target is followed by a
pattern mask with similar characteristics (the pattern mask condition);
and it is considerably smaller, and can vanish altogether, when the tar-
get is low in contrast or otherwise degraded and is followed by a
white, nonpatterned field (the blank mask condition; Johnston &
McCleliand, 1973).

MORSEL accounts for the WSE in much the same manner as does
McCilelland and Rumelhart’s interactive-activation model (McClel-
land & Rumelhart, 1981). Namely, higher-order knowledge helps
support letters embedded in words or pseudowords but not letters
embedded in random letter strings or letters presented alone. In the
interactive-activation model, word units feed back on letter units; in
MORSEL, there is no explicit feedback from one level to the previous,
only the letter-cluster units of the PO net which interact with one
another. As I have shown previously (e.g., section 6.2.2), the PO net is

8 In some empirical studies of the rarget redundancy effect, display size is fixed and
distractor letters are included to fill out the display. For instance, three letters might
have been presented on each trial, thereby requiring two distractors in the one-target
condition and one in the two-target condition. MORSEL produces a redundancy effect
under these circumstances as well,
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effective in cleaning up noise in the input, but only to the extent that
the target output is a fightly coupled coalition of letter-cluster units,
The letter R in WEAR is supported by a coalition of six compatible
neighbors—WE R, W_AR, EAR, E_R¥, AR¥, and R**, but, following the
representation proposed earlier for isolated letters, an R presented
alone is supported by only three—*+R, *R#*, and R**, Larger coalitions
are more self-reinforcing, and hence, better able to withstand the com-
petition from alternative responses. Thus, orthographically regular
strings like WEAR should benefit more than other stimuli from the
operation of the PO net.

To verify this prediction, a simulation experiment was performed.
Each trial of the simulation consisted of activating a set of letter-
cluster units under certain assumptions and then observing which item
was selected by the PO net. The stimuli studied were WEAR and the
single letter R. On WEAR trials, units in the PO net included all clus-
ters of WEAR and WEAK; on R trials, the PO net was composed of six
units, the three for R and the three for K. Semiex units were not
included, to make the point that semantic and lexical knowledge is not
critical.

Following the distinction made by earlier investigators (McClelland
& Rumelhart, 1981; Rumelhart, 1970; Turvey, 1973), I assume that
the limitation in performance in the pattern mask condition is on the
duration for which information is available to the system, while the
limitation in the blank mask condition is on the guality of information
presented. Thus, in the pattern mask condition, letter clusters were
initially activated with high acuity, but after a brief time, arrival of the
pattern mask interrupts processing by providing new iconic informa-
tion that displaces the veridical letter-cluster activity. In the blank
mask condition, the initial stimulus is highly degraded due to its low
contrast; and because of the nature of the mask, the iconic trace per-
sists beyond the offset of the stimulus.

The specific processing assumptions are as follows. In the pattern
mask condition, letter clusters of WEAR (or R) were initially set to an
activity level of 0.1 and clusters of WEAK {(or K) to 0.0; these letter-
cluster units fed activity to the PO net for three iterations, after which
their activity was reset to 0.0 and Gaussian noise, N (0,0.4), was added
to the activity of each letter-cluster unit. The PO net was then allowed
to settle, resulting in a pattern of activity consistent with either WEAR
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or WEAK (or R or K). In the blank mask condition, letter clusters of
WEAR were initially set to an activity level of 0.1 and clusters of
WEAK to 0.09; additionally, Gaussian noise, N (0,.015), was added to
the activity of each letter-cluster unit. The PO net then settled based
on this input into one of the two response states. The noise levels of
4 and .015 were selected to atfain a performance level of about 80%
for word stimuli in the two conditions.

Table 6.2 shows the outcome of this simulation. The correct
response is WEAR for the word stimuli and R for the letter stimuli.
Each data point is the result of ten thousand trials and is quite reliable.
A WSE is obtained in both the pattern and blank mask condiiions, but
the effect is much smaller in the latter. Parameter values such as the
amount of noise, the number of iterations before the onset of the pat-
tern mask, the letter-cluster unit activation levels, and parameters of
the PO net did not affect the qualitative behavior of the system. How-
ever, the simulated WSE is smaller in magnitude than that reported in
experimental studies; for example, Johnston and McClelland (1973)
found a 15% word advantage for pattern masked displays. One expla-
nation for the discrepancy is that I have oversimplified the situation by
allowing only two possible outcomes of the PO net. With additional
letter cluster units, perceptions other than the two response alterna-
tives could arise, in which case the system would have to guess. One
can readily imagine scenarios in which these guesses are more damag-
ing for single-letter stimuli, thereby amplifying the WSE.’

9 One further clarification of my simulation results is necessary. Johnston and
McClelland (1973) found a significant difference in the blank mask condition between
isolated letters and letters embedded in pound signs, e.g., ##R: When presentation
conditions are matched, performance is better for isolated letters, leading to a WSE
for words over letters in pound signs but not words over isolated letters. The differ-
ence between letters in pound signs and isolated letters is attributed to lateral interfer-
ence arising from the pound signs; letters in pound signs, as well as letters in words,
receive interference from the context in which they are embedded, which reduces their
relative signal strength, On this account, my single letter stimuli correspond most
closely to the letter-in-pound-sign stimuli because the activation level of spurious
clusters (those supporting K) are the same in word and single letter conditions. To
simulate the absence of lateral interference in the isolated letter condition, the mean
activation level of spurious clusters must be reduced. As predicied, whenK cluster ac-
tivity is lowered from .09 to 088 for single lelter stimuli, performance improves and
the WSE is altogether eliminated,
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6.3.3.1 The WSE and Inter-Letter Spacing

MORSEL makes a counterintuitive prediction regarding the WSE: as
the spacing between letters of a string is increased, the advantage for
letters in words should disappear. Increasing inter-letter spacing
results in letters being encoded as isolated entities and not in terms of
the adjacent letters: W E A R might be encoded as *w+#, *E*, *A%, and
*R* rather than *WE, WE_R, and so forth. By removing the clusters
that encode inter-letter dependencies from the representation, the
benefits of the PO net are lost, and letters in words will be identitied
no more accurately than single letters or letters in random letter
strings. Surprisingly, this counterintuitive proposition is supported
experimentally, both in free report (Mewhort, Marchetti, & Campbell,
1982) and cued report (Holender, 1985).

6.3.3.2 The WSE and Attention

The WSE also vanishes if observers are precued with the location of
the critical letter, i.e., the letter about which they will be required to
make a judgement (Johnston & McClelland, 1974; Johnston, 1981).
MORSEL has a straightforward interpretation of this result. Precning
location presumably serves to focus attention on the critical letter.
When attention is focused on the R of WEAR, the spotlight allows
activations stemming from R to propagate through the system but inhi-
bits activations from the other letters. The R is thus processed in vir-
tual isolation. As is the situation when the spacing between letters is
increased, the R in WEAR yields a letter cluster activity pattern similar
to that of an R presented alone, and performance in the two conditions
is comparable.

Table 6.2 Word Superiority Effect Simulation

Pattern Mask Blank Mask

Stimulus (% Correct) (% Correct)
Single Letter 74.9 79.7
Word 81.6 81.7
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6.3.4 Importance of Word Boundaries

Word boundaries appear to be critical in perception. It is well known
that letters at the ends of a string are reported more accurately than
internal letters, either because the quality of information about internal
letters is degraded by lateral interference (Townsend, Taylor, &
Brown, 1971; Wolford & Hollingsworth, 1974) or because the posi-
tions of internal letters are poorly encoded (Estes, Allmeyer, & Reder,
1976; Mewhort & Campbell, 1978). T have already indicated that
such effects are present in MORSEL (sce sections 6.2.1 and 6.2.2).
Beyond affording a perceptual advantage to end letters, boundaries
serve to define the extent of a word. Readingtextwithoutspacescanbe-
quitedifficult. Pollatsek and Rayner (1982) studied the effect of gaps
between words by monitoring eye fixations and strategically filling
the gap between certain words after a fixed amount of time into the
fixation, One interesting result of this study is that the processing of a
fixated word is disrupted considerably more by filling the gap
immediately following the word’s end with a random letter than with
a random digit or dot pattern,

In MORSEL, removing gaps interferes with word identification.
Compare MORSEL’s response to the word CAN presented in isolation
and to CAN embedded in a longer string of letters, say, S in front and B
in back, as it appears in the fused sentence above. The patiens of
letter-cluster acfivity in response to CAN and SCANB overlap on only
one cluster—CAN; thus, there is little similarity between the two
strings, and the pull out net will invariably fail to read out CAN when
SCANB is given as input. The embedded word can be recognized
correctly only if its boundaries are known and attention is focused on
the region of interest. If, however, gaps between words are replaced
by digits, a condition studied by Pollatsek and Rayner, recognition
should not be as difficult. Consider CAN embedded in a 7 and an 8,
7CANS. It is unclear what pattern of activity will emerge from BLIR-
NET, but with a bit of retraining, the network could learn to treat all
digits as blank space insofar as letter clusier activations are concerned,
that is, to activate units like **C and AN* in response to 7CANS8. Such
training is not feasible when words are embedded in random letters
because the set of to-be-ignored elements is identical to the set of to-
be-analyzed elements.
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6.3.5 Recognition of Misspelled Words

People are quite able to recognize misspelied words, even out of con-
text. Whether such performance will be mimicked by a model
depends on how similar the representation of the incorrect spelling is
to that of the correct spelling. In this regard, it is interesting to con-
trast representations of words based on position-specific letter chan-
nels (e.g., McClelland & Rumelhart, 1981; McClelland, 1984) and
MORSEL’s letter-cluster representation. Position-specific encodings
have difficulty with misspellings formed by insertion or deletion of
letters because such transformations cause misalignment of the letter
channels. For example, if DIMINISHED is misspelled as DIMISHED,
the correct and incorrect spellings share a common representation of
the beginning of the word— in position 1, I in position 2, etc.—but
the similarity of their endings is not captured—the § is in position 7 of
DIMINISHED but in position 5 of DIMISHED, etc. (Allowing for a bit
of spatial slop does not solve this problem entirely, and it creates a
host of additional problems.) In terms of MORSEL’s letter-cluster
representation, however, DIMINISHED and DIMISHED have a greater
proportion of their elements in common because the letter-cluster
representation encodes only relative, not absolute, letter position.

That DIMISHED and DIMINISHED have similar representations is not
sufficient for the two to be identified as the same. Some means of fil-
ling in the missing letters of DIMISHED is necessary. The PO net pro-
vides a mechanism that can compensate for incorrect spellings, just as
it compensates for other forms of noise. DIMISHED shares enough
clusters in common with the correct spelling that the correct spelling
is a plausible candidate for pull out. Additionally, DIMINISHED has a
major advantage over DIMISHED: it is a word. Words have strong
associations with the semlex units, which causes the PO net to prefer
words over pseudowords, making DIMINISHED an even more viable
candidate. So it seems that MORSEL should often compensate for
misspellings, as long as the misspelling doesn’t eradicate a large pro-
portion of the clusters of the correct spelling.

When the PO net compensates for a spelling error, its output is
indistinguishable from that when the correctly spelled word is
presented. Thus, the error goes undetected. An error is more likely to
be compensated for, and hence pass undetected, if it does not greatly
alter the pattern of letter-cluster activity. Reversing the letters of a
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word, e.g., DEHSINIMID, fundamentally alters the pattern of activity,
whereas substituting one letter for another does not. MORSEL makes
a curious prediction regarding the detection of misspellings: errors
involving the insertion or deletion of repeated letters in a word should
be particularly difficult to detect. Consider DIMINSHED (the I has
been omitted). Although the string does not directly activaie clusters
containing the missing I, e.g., INI and NIS, these clusters are the prime
candidates for spurious activation due to the presence of other I's in
the string (see section 2.5.1); for example, the cluster INI receives par-
tial activation from the IMI of DIMINSHED (because the two are visu-
ally similar), as does NIS from the INS (because the two share the same
letters but in a slightly rearranged order). As a result of these spuricus
activations, DIMINSHED and DIMINISHED vyield quite similar patterns
of activity, certainly more so than DIMINISED and DIMINISHED;
hence, a missing I is less likely fo be noticed than a missing H. A
similar argument can be raised concerning the detection of inserted
letters, e.g., REVERESED: for the same reason that DIMINISHED and
DIMINSHED yield similar activity patterns, so do REVERESED and
REVERSED, more so than, say, REVERUSED and REVERSED.

A simulation study was conducted to fortify these arguments. I
examined the pattern of letier cluster activity resulting from the
presentation of misspelled words. The misspelled words were formed
either by deleting a letter or by inserting one or two consecutive
letters, Half of the misspellings involved repeated letters. The stimuli
are shown in table 6.3. The issue was whether misspellings involving
repeated letters would be more difficult to detect than those involving
nonrepeated letters, Difficulty of detection can be measured by
presenting the misspelled word to BLIRNET and examining how
strongly the incorrect spelling is activated relative to the correct spel-
ling. The incorrect spelling will always be stronger than the correct,
but the prediction is that for misspellings involving repeated letters
this incorrect:correct ratio will be lower (closer to 1) because the pat-
terns of activity for the correct and incorrect spellings are more simi-
lar,

The activation strength of the correct and incorrect spellings was
derived from the activity of the letter-cluster units, according to a for-
mula used by Mozer and Behrmann (1990a). This formula specifies
that the strength of a particular spelling is the average activity of the
letter clusters appropriate for that spelling—the target clusters—minus
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Table 6.3 Stimuli Used in Misspelling Simulation

Deleted Letter Inserted Letter(s)
Correct Repeated  Nonrepeated Correct Repeated  Nonrepeated
Spelling Letter Letter Spelling Letter(s) Letter(s)
EMINISHED DIMENSHED TIMINISED REVERSED REVERESED REVERLISETH
ELNERLY FLIBERY ELDELY COOPERATION COUOPERATION COODPERATION
SLUNTANNING SUNTANING SUNENNING MABITUATED RARITITUATED HTABITORUATED
NIGIFTSHIRT NIGHESIRT NKIHTHIRT DECEMIER DECEMEMNER DECEMOLSER
CONSONANT TONSNANT CONONANT DEHAYE DEHAIEVE BEHARVE
CONSONANT LONSOANT CONSONNT DEFENSE DEFENSFE DEFENSYE
REMEMBER REMERER REMEMER - EVALUATION E¥ALUALTION EYALUASTION
DISCUSY mECUS DMSCSS TENDENCY TENEGENCY TENIDENCY
SCISs0R SCISOR SCSS0R KNOAWING KNOWNENG KNOWLING
SENSORY SENORY SESORY FAMILIARITY FAMILIARIATY FAMILIARIOTY
POSSESS POSESS PSSESS MOTIVATED MOTEVATIED MOTSVATUED
MISSFELLING MESPELEING MISSELLING QUATRANT QUADRUANT QUABRYANT
AFFROFRIATE AFFROFPIATE APPROTRATE FHEQUENCY FREQUENECY FREGUENTCY
SLOWDOWN SLAWHOWN SOWDOWN COMMAND COMMANND COMMAIND
NUNPLE NUREF BUBDE TENET TENTEF TENFET

the proportion of activity in nontarget clusters, normalized to lie in the
range [0,1]. This measure reaches 1 only if all target clusters are fully
active and no nontarget cluster is active.

It was problematic to examine the actual output from BLIRNET
because BLIRNET was trained to recognize only a small subset of the
possible letter clusters. Instead, I used a simple algorithm to obtain
activations similar to what BLIRNET would have produced in a full-
scale implementation (extrapolating from the properties of BLIRNET
noted in section 2.5.1). Basically, a letter cluster was activated to the
extent that it matched a sequence of letters in the input string. Partial
matches produced partial activations, depending on the visual similar-
ity between letters. For example, the INI cluster was activated by
presentation of DIMINSHED, primarily because INI matched ™I
well—the N and M being visually similar—but also because INI partly
matched INS. Further, a cerfain amount of positional uncertainty was
included in the match process, permitting clusters representing slight
permutations of the input string to become active. For example, the
NIS cluster was activated by presentation of DIMINSHED because inter-
changing the N and its adjacent I yields DIMNISHED, in which the
sequence NIS is present. This algorithm is described fully in Mozer
and Behrmann (1990a, appendix 4).
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Measuring the incorrect:correct spelling activity ratio, the results
are quite striking. In the case of misspellings involving deleted
letters, the ratio is 1.42 for nonrepeated letters but only 1.31 for
repeated letters. In the case of misspellings involving inserted letters,
the ratio is 1.34 for nonrepeated letters but only 1.29 for repeated
letters. Both these differences are statistically reliable (#(1,14)=18.7,
p<.001; F(1,14)=4.80, p<.05), and they are observed under a wide
variety of assumptions about the nature of BLIRNET activations.
Thus, misspellings involving repeated letters are more difficult to
discriminate from the correct spelling, and hence are more likely to
pass undetected.

Anecdotally, in a corpus of troublesome misspelling I have col-
lected, many do fit the description predicted by MORSEL. Recently,
however, I have discovered much stronger support from an empirical
study (MacKay, 1969; 1987) showing that repeated-letter misspel-
lings, both deletions and insertions, are more difficult to perceive and
recall. The study further finds that perception of repeated-letter
misspellings is more difficult when the repeated letters are close
together, and that errors involving the second of two repeated letters
are more difficult to detect than errors involving the first, e.g.,
EDERLY versus ELDERY. These further effects have not been simu-
lated in MORSEL, but could readily be explained if long words were
processed not as a whole but rather in smaller chunks. Such a strategy
clearly seems beneficial in a misspelling detection task.

6.3.6 Integration of Information Across Fixations

Rayner and colleagues (Rayner, 1978; Rayner, McConkie, & Ehrlich,
1978; Rayner, McConkie, & Zola, 1980) have shown that a word or
letter string appearing in parafoveal vision can facilitate the process-
ing of a similar word appearing shortly thereafter in the fovea. Thus,
information acquired from one region of the visual field can interact
with information from another. Studies have explored the nature of
the information preserved from one fixation to the next. Because
letter case can be changed between fixations and have no effect on the
degree of facilitation (McConkie & Zola, 1979; Rayner, McConkie, &
Zola, 1980), the use of an integrative visual buffer (Irwin, Yantis, &
Jonides, 1983) can be ruled out: presumably, if observers were storing
overlapping visual information in an iconic buffer, then changing the
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case of every letter should seriously disrupt perceptual processing.
Rayner, McConkie, and Zola (1980) propose that the information
integrated consists of the identities of letters of the word (but only the
beginning letters unless the word is near the fovea).

In MORSEL, the logical locus of information integration is
BLIRNET’s letter-cluster level. Presentation of a parafoveal stimulus
causes activity in the letter-cluster units. If this activity persists, it
would serve to prime the subsequent foveally presented word, causing
pull out of that word to proceed more rapidly. The same sort of facili-
tation is expected in normal reading: as the reader processes the fix-
ated word, information about other words on the page becomes par-
tially activated (more so when attention is not sharply focused), allow-
ing these words to be read out more rapidly when the focus shifts to
them. T have assumed that letter-cluster units encode abstract letter
identities, hence the predictions that letter case should not affect
integration.

Key to the success of this account is the fact that in MORSEL, iden-
tity information and location information are decoupled: BLIRNET
represents identities, the AM locations. If spatial location information
was maintained in the letter-cluster representation, then summation of
activities would not help to integrate information across fixations.
Empirical support for the decoupling of identity and location informa-
tion comes from a recent study of Pollatsek, Rayner, and Henderson
(1990), who found that the degrec of facilitation by a parafoveal
stimulus is largely insensitive to whether the parafoveal and foveal
stimuli appear in the same spatial location, Pollatsek et al. thus con-
clude that "the process of object identification is relatively insensitive
to location information and that object information and location infor-
mation are coded fairly independently” (p. 199).

6.3.7 Cost of Attentional Engagement

Speeded response to a visual stimulus is delayed by the presence of
irrelevant stimuli, even when sensory interference, discriminability
difficulties, and response conflict are ruled out as contributing factors
(Eriksen & Hoffman, 1972; Eriksen & Friksen, 1974; Eriksen &
Schultz, 1978; Kahneman, Treisman, & Burkell, 1983). In the Kahne-
man et al. study, observers were asked to read as rapidly as possible a
word that appeared unpredictably above or below the fixation point,
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On half the trials, another object was presented on the opposite side of
fixation, either a word or a word-sized patch of randomly placed black
dots. The mere presence of the second object resulted in a reading
time delay of about 30 msec. This delay was eliminated by precuing
the location of the relevant stimulus. Surprisingly, delays are
observed even when the display contains only one item (Eriksen &
Hoffman, 1973, 1974; Hoffman, 1975). In these studies, a single
letter was presented in a position that varied randomly around the fix-
ation point. Unless the exact position of the letter was precued, iden-
tification reaction times were delayed by about the same magnitude as
in the Kahneman et al. study.

There is a great burden on MORSEL io explain these delays, as they
seem contrary to its spirit, for two reasons. First, BLIRNET posits
paralielism, albeit capacity limited. BLIRNET should be able to pro-
cess multiple items simultaneously, especially if the irrelevant items
are not meaningful: meaningless dot patches should not propagate
activation upwards through BLIRNET, and hence, should not interact
with the processing of the relevant stimulus, a real word. Thus, the
experimental finding of delays due to dot patches goes against the
grain of the model. Second, one significant advantage to BLIRNET is
that, unlike some other computational approaches to perception (e.g.,
Hinton, 1981a,b; Palmer, 1984), it does not require selection by loca-
tion as a precursor to identification: it can analyze an item without
knowing its location. The finding of delays in single-item displays
where there is positional uncertainty seems to refuie this ability in
people.

Although BLIRNET cannot elucidate the reasons for such delays,
another component of MORSEL can: the AM. Indeed, Kahneman et
al. suggest that delays they observe are due to attentional factors. The
general picture that emerges from the experimental work is that when-
ever one or more items is presented and the location of the relevant
item is not known in advance, there is the mandatory involvement of
an attentional process that takes some time to become fully engaged.
This description is consistent with the operation of the AM. 1f location
is known prior to stimulus onset, higher-level processes can orient
attentional activation to that location. Otherwise, bottom-up activa-
tions from L, of BLIRNET and the other modules are needed to trigger
attention. Triggering attention is not instantaneous; activation of the
AM units builds gradually (see, for example, figures 4.4 and 4.5).
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Until it reaches a certain level, reliable transmission of information
through BLIRNET and the other modules is not possible. Thus, there
is a temporal cost to the engagement of the AM, which is reflected in
the empirically observed delays!®

One aspect of MORSEL is puzzling with regard to these results. If
higher-level processes are able to direct the AM to a cued location
prior to stimulus onset, why not use the same technique to orient to a
much broader spatial region—the entire visual field? That is, why
shouldn’t top-down connections activate each and every AM unit?
This would allow stimulus information from all locations to be
analyzed equally well without first having to engage attention. From
a logical standpoint, this mode of operation would be beneficial in the
experimental tasks described above, but the data suggest that such a
maode is impossible. Other research supports the notion that there is a
limited ability for a location to capture and hold attention in the
absence of sensory stimulation (Hillyard, Munte, & Neville, 1985;
Posner, 1980). This explains why advance knowledge of the specific
location facilitates processing.

6.3.8 Stroop Interference Effects

In a task first studied by Stroop (1938), observers are asked to name
the ink color in which a word is printed. Although the word itself is
irrelevant to the task, the nature of the word influences performance:
Observers are slower to name the ink color, and errors are more fre-
quent, when the word is a color name and the name is incongruous
with the ink color. For example, response to BLUE written in red ink
is slower than to a neutral word, say FOLK.

MORSEL readily provides an account of this phenomenon which is
based on the fact that the AM attends to locations, not feature dimen-
sions. If MORSEL is to analyze information about the color of a word,
attention must be focused at the word’s location. This enables the

10 This explanation of attentional engagement should not be misunderstood to imply
that the AM must always sefect a single stimulus item: if the AM’s parameters are set
to allow a wide deployment of attention, several items may be included within the
spotlight. This is what } mean when T refer to attention as being "unfocused": Un-
focused attention is the state wherein attention has been engaged and it envelops all
stimuli evenly.
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color detection module to process color information and BLIRNET to
process word-identity information. The results computed by these two
modules are then passed to the PO net, which must select a single
word identity and color. If the selection of word identity did not
interact with the selection of color, the Stroop effect would not be
observed. However, in MORSEL there is a locus of interaction: the
semlex units. Semlex units are mutually excitatory with units
representing color, as well as units representing word identities.
When MORSEL processes the word BLUE in red ink, the letter-cluster
units of BLUE become active in the PO net, as do the color units
representing redness. The letter clusters of BLUE then activate the
semlex units representing blueness, which in turn activate the color
units representing blueness. Because the PO net must select a single
color, there is a competition between redness and blueness. The
stronger this competition is, the longer the PO net will take to make a
selection. Consequently, response time will be slower when the word
written in colored ink is an incongruous color name' !

In the Stroop task, an asymmetry between color and word naming
is observed: the color naming task is interfered with more by word
identity than a word naming task is interfered with by color identity.
To explain this fact, one would have to posit that the connections
between letter-cluster and semiex units are stronger than those
between color and semlex units. Cohen, Dunbar, and McClelland
{1990) have proposed a connectionist model of the Stroop task which
is able to explain the asymmetry between word and color naming, as
well as other, more subtle findings.

'The Stroop task has not been simulated in MORSEL because doing
so would require implementation of a color identification module.
Nonetheless, there are related phenomena that are more amenable to
simulation in the current implementation of MORSEL. The essence of
the Stroop phenomenon—that observers are unable to prevent infor-
mation known to be irrelevant from interfering with the processing of
the relevant—is found in a task studied by Behrmann, Moscovitch,
and Mozer (1990). In this task, observers are shown letter strings with

H This account makes the unintuitive prediction that if subjects are shown color
words in brief exposures, they might produce cross-dimensional confusions in which a
printed word is transformed into an ink color or vice-versa. This indeed occurs, as
described in section 6.2.5.2.
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the rightmost portion underlined, say GARM or EAST, and are asked to
report whether the underlined portion—the target-—is a word or not.
The lexical status of the whole string—the context—is irrelevant to
the task, Thus, the correct response to GARM is yes and to EAST is no.
Four stimulus conditions were studied: target words embedded in
word contexts (e.g., FARM), target words embedded in nonword con-
texts (e.g., GARM), target nonwords embedded in word contexis (e.g.,
EAST), and target nonwords embedded in nonword contexts (e.g.,
WAST). These four conditions are called WIW (for word in word),
WIN (word in nonword), NIW, and NIN, respectively. Response times
observed by Behrmann et al. are shown in the second column of table
6.4. Not surprisingly, the lexical status of the target had a significant
effect on response time, with words being faster than nonwords. This
is consistent with previous lexical decision studies (Rayner & Pol-
latsek, 1989). The interesting result was that the lexical status of the
context also played a significant role: responses to word contexts
were slower than to nonword contexts. No statistical interaction was
found between lexical status of target and context. Thus, although
subjects were told to attend to and respond on the basis of the under-
lined portion of the string, the irrelevant context influenced perfor-
mance.

MORSEL predicts an influence of the irrelevant context in part
because even if the underlining causes attention to be focused on the
target, the context and target overlap in spatial location and it is
impossible to process the target without also processing a portion of
the context. This is analogous to the Stroop task, where it is impossi-
ble to process the color without also processing the word identity, A
second reason for the influence of the irrelevant context is that in

Table 6.4 Embedded Target Experiment and Simulation

Response Time
i Human Observers MORSEL
Condition (RT in msec) {avg. number of cycles
from Behrmann et al. to reach equilibrium)
word-in-word (WIW) 842 36.7
word-in-nonword (WIN) 802 327
nonword-in-word (NIW) 1003 59.5
nonword-in-nonword (NIN) 890 49.1
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MORSEL, attention acts to inhibit, not completely suppress, the flow
of information from unatiended regions of the visual field. Thus, even
assuming that MORSEL focuses attention narrowly on the underlined
portion of the stimulus, the nonunderlined portion will receive some
degree of analysis as well.

Consider the consequence of partial analysis of the unattended
information. Presenting a stimulus like FARM will cause the AM to
focus on ARM, which in turn will cause BLIRNET to activate the letter
clusters of ARM strongly and the clusters of FARM partially. Addition-
ally, BLIRNET produces spurious partial activations of visually similar
words. The task of the PO net then is to read out the target and
suppress the context and other alternatives. To the extent that the con-
text and other alternatives are strongly activated relative to the target,
the PO net has a more difficult selection task; this is reflected in the
PO net requiring a larger number of iterations to settle on a stable
activity pattern. The PO net competition is also influenced by the lexi-
cal status of the items: if an item has a semlex representation, this
representation serves (o reinforce the item’s orthographic representa-
tion. To use traditional terminology, the semlex representation pro-
vides top-down support to a particular candidate. This support can
facilitate processing if the target is a word, or can impede processing
if the context is a word. In the former case, the top-down and
bottom-up evidence are consistent; in the latter case, the top-down
evidence reinforces the context word, and thereby makes it more diffi-
cult to resolve the competition between target and context. This is the
basis for predicting that MORSEL will respond more rapidly to words
(ARM in FARM and GARM) than to nonwords (AST in EAST and
WAST), and to strings presented in a nonword (ARM in GARM and AST
in WAST) than to words presented in a word (ARM in FARM and AST in
EAST),

Conducting a simulation to test these predictions is complicated by
the fact that occasionally the PO net selects the context—say, EAST—
or some other alternative instead of the target—AST. Human subjects
in these experiments experience the same difficulty as well; this is one
source of errors, as when subjects make the wrong lexical decision,
responding to the context EAST instead of the target AST, Often, how-
ever, subjects become aware that the perceived string does not match
the underlined portion of the stimulus string. Some type of verifica-
tion process is required to detect the incongruity between perceived
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and the target strings. One simple possibility is the use of word length
cues. However, because MORSEL does not encode word length expli-
citly, I propose an alternative means of verification. I assume a pro-
cess (which is not modeled directly) that focuses on the first letter of
the underlined portion of the stimulus string and matches it against the
first letter of the string read out by the PO net. If the two letters
disagree, MORSEL is triggered to reprocess the stimulus with the unat-
tended information further suppressed.

T can now describe in greater detail the sequence of processing
steps that MORSEL takes to perform the lexical decision task on the
underlined portion of a stimulus string. When the string is first
presented, the AM begins selection of the underlined portion. Simul-
taneously, BLIRNET begins processing the entire stimulus. Either
because the AM has not yet had titne to suppress the irrelevant portion
of the string, or because the unattended portion is partly analyzed by
BLIRNET, BLIRNET activates the context as well as the target.
Operating on this input, the PO net must select one item as the
response. [ assume that the PO net continues to cycle until equifi-
brium is reached; this is the point at which the activity of each unit in
the PO net changes by less than 1% from one cycle to the next, or a
maximum of 50 cycles. Next, the verification process is carried out.
If verification fails, the PO net is allowed to reprocess its input, but
this time with the unattended information completely filtered. The
model responds "yes"—i.e., the underlined portion is a word—if there
is a coalition of semiex units with activity close to 1.0, indicating that
the selected string has an associated lexical or semantic activity pat-
tern and is hence a word. Otherwise, the model responds "no.” The
model’s processing time is measured as the number of cycles the PO
net requires to reach equilibrium. If verification fails and the PO net
must reprocess the stimulus, the processing times from the first and
second settlings of the PO net are added,

All four stimulus conditions were studied in our simulations:
WIW, WIN, NIW, and NIN. The WIW stimuli were: FARM, CLOCK,
ESTATE, TREASON, QUART, CEREAL, TRACTOR, RESOURCE, RABBIT,
MANDATE, UNIVERSE, and CARNATION, These stimuli vary both in
the length of the target and the context. Rather than generating dif-
ferent stimulus sets for the other three conditions, exactly the same
stimuli were used but the context and/or target were redefined as non-
words. To elaborate, what distinguishes a word from a nonword in




OTHER PERCEPTUAL AND ATTENTIONAL PHENOMENA 143

MORSEL is that the word has an associated set of semlex units. Thus,
I simply removed the semlex units for the target to transform the
WIW stimuli into NIW stimuli, and so forth. This ensured that the
four conditions were identical on all dimensions except for the lexical
status of the target and context.

The details of the simulations are reported in Mozer and Behrmann
(1990a, appendix 4). Several aspects of the simulations bear mention.
Because it was not computationally feasible to simulate the PO net
with its full complement of orthographic and semlex units, a PO net
was specially constructed for each stimulus item. The PO net for a
particular item consisted of the orthographic and semiex units neces-
sary to represent the target, the context, and a variety of alternative
responses visually similar to the presented stimulus (e.g., WARM,
FARCE, and BARM for FARM). For the WIW condition, there was an
average of 347 letter-cluster units, 336 semlex units, and 7876 connec-
tions; for the other conditions, there were slightly fewer semlex units
and connections.

Each stimulus item was presented to MORSEL one hundred times.
MORSEL can yield different responses on different trials due to two
random factors—noise introduced in BLIRNET and the specific pattern
of semlex unit connectivity. The third column of table 6.4 shows the
average number of cycles required for the PO net to settle in each con-
dition for correct responses. These numbers are in qualitative agree-
ment with the human RT data obtained by Behrmann et al., in the
sense that the rank orderings of the response times are identical.
Responses to nonword targets are slower than to word targets, and
responses (0 word contexts are slower than to nonword contexts. The
correlation between the simulation and human data has a correlation
coefficient of .98. Error rates produced by the model were below 6%
in each condition,

Conducting an analysis of variance with stimulus items as the ran-
dom factor, the main effects of target type and context type are both
significant (target: F(1,11)=42.8, p<.001;, context: F(1,11)=13.5,
p<.01}, while the interaction is not (F(1,11)=3.3, p=.098). Conducting
specific comparisons of the WIW versus WIN conditions and the NIW
versus NIN conditions, both indicate reliable effects (WIW/WIN:
F(1,11)=28.7, p<.001; NIW/NIN: F(1,11)=8.0, p<.02). The qualita-
tive pattern of results is quite insensitive to parameters of the PO net,
the PO net equilibrium criteria, and the nature of the verification
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process. The main effects of context and target are statistically reli-
able for a wide range of parameter settings. However, some parameter
settings cause the target X context interaction to become significant.
The interaction can be prevented by increasing the strength of the
bottom-up input from BLIRNET to the PO net relative to the top-down
support from the semlex units. Adjusting this strength is legitimate
because, as stated in section 3,3.3, I assume that subjects can exert
deliberate control over the relative influence of semantics or lexicality
depending on the specific nature of the task (e.g., whether nonwords
are expected as well as words).

One could attempt to transform the simulated settling time of the
PO net to an overall response time for MORSEL, However, the PO
net’s contribution is just a small fraction of the complete response
time of MORSEL; one must also include the time to perform percep-
tual, verification, and response processing. Because this time does not
depend on the stimulus condition, it can be represented by a single
number. Taking this time to be 575 msec, and each cycle of the PO
net to demand 7 msec, a nice quantitative match to the human data is
obtained. However, one should not be terribly impressed given that
two additional parameters were needed to fit just four data points! In
any case, MORSEL clearly predicts the behavioral patterns shown by
human observers and explains why stimulus information known to be
irrelevant to a task can nonetheless harm performance.

6.4 Neuropsychological Phenomena

I now describe several acquired reading disorders—neglect, atten-
tional, surface, and phonological dyslexia—and give an account of
these disorders in MORSEL. The account of neglect dyslexia has been
elaborated in some depth, whereas the accounts of attentional, surface,
and phonological dyslexia are somewhat speculative, but provide
interesting directions in which to extend MORSEL.

6.4.1 Neglect Dyslexia

The work summarized here has been conducted in collaboration with
Marlene Behrmann, A complete description of the work, including
details of the simulations, is found in Mozer and Behrmann (1990a,
1990b).
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Neglect dyslexia is a reading impairment acquired as a conse-
quence of brain injury. Neglect dyslexia patients may ignore the left
side of an open book, the beginning words of a line of text, or the
beginning letters of a single word, even when all the visual informa-
tion appears in an intact region of their visual field (Bisiach & Vallar,
1988; Caplan, 1987; Ellis, Flude, & Young, 1987)!* Neglect dyslexia,
and the concomitant hemispatial neglect syndrome, is traditionally
interpreted as a disturbance of selective attention (Heilman, Watson,
& Valenstein, 1985; Kinsbourne, 1987; Mesulam, 1981; Posner &
Petersen, 1990). Onec goal of studying neglect dyslexia is to better
understand attentional selection in normal processing. Unfortunately,
the Hterature on neglect dyslexia provides a seemingly contradictory
source of data regarding the locus of the attentional deficit. Certain
phenomena suggest that the deficit occurs early in processing, con-
sistent with an ecarly-selection view of attentional selection; other
phenomena suggest that the deficit occurs much later in processing,
following object identification, consistent with a late-selection view.

In favor of the early-selection view, neglect dyslexia has been
shown to occur with respect to a retinal (or head- or body-centered)
coordinate frame, as opposed to an intrinsic object-centered frame.
Supporting evidence includes the following:

e Vertically presented words are not subject to neglect.

» rotation of words 180° leads to neglect with respect to the left of
the retinal frame, not the object-centered frame. (However, see
Barbut and Gazzaniga, 1987, and Hillis and Caramazza, 1989,
for an alternative conceptualization.)

# Retinal location of a word affects performance: the further to
the right a word is presented relative to fixation, the better it is
reported (Behrmann, Moscovitch, Black, & Mozer, 1990; Ellis
et al., 1987). :

These findings suggest an attentional disruption occurring at an early
stage of analysis for the following reason. The initial encoding of the

12 All descriptions here refer to left-sided neglect, which results from -right-
hemisphere damage, because extrapersonal neglect appears to cecur more frequently
and be more severe following lesions to the right hemisphere than to the left (Black,
Vu, Martin, & Szalat, 1990; De Renzi, 1982; but see Ogden, 19835, for evidence to the
contrary).
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visual world is certainly retinotopic, and one can argue on computa-
tional grounds that object recognition requires as a precondition a
recoding of the perceptual data into an object-centered representation
(Hinton, 1981a; Marr, 1982). Thus, if attentional selection operates
on a retinotopic encoding, it must operate prior to object recognition,
However, there is contradictory evidence indicating that the atten-
tional disruption occurs at later stages of analysis. This evidence
includes the following:

e Neglect is less severe for words than nonwords (Brunn & Farah,
1990; Sieroff, Pollatsck, & Posner, 1988),

e The nature of error responses depends on the morphemic com-
position of the stimulus (Behrmann et al., 1990).

e Extinction interacts with higher-order stimulus properties: if
two words are presented that form a compound, e.g., COW and
BOY, the patient is more likely to neglect the left word than in a
control condition, e.g., SUN and FLY (Behrmann et al., 1990).

These paradoxical results ruie out simple early and late selection
views of attention. The early-selection view cannot explain why
selection may depend on higher-order stimulus properties. The late-
selection view is contrary to the finding that neglect depends on the
position and orientation of the word in the visual field.

We have reconsidered the phenomena of neglect dyslexia within
the framework of MORSEL, and demonstrated that a simple lesion to
the AM produces the varied symptoms of neglect dyslexia. The lesion
is in the bottom-up connections to the AM from the input feature
maps. The damage is graded monotonically, most severe at the left
extreme of the retina and least severe atf the right. The consequence of
the damage is to affect the probability that features present on the
retinotopic input maps are detected by the AM. To the exient that
features in a given location are not detected, the AM will fail to focus
attention at that location. Note that this is not a perceptual deficit, in
the sense that if attention can be mustered, features will be analyzed
normally by BLIRNET.

To give the gist of the account, MORSEL and the hypothesized defi-
cit are compatible with the early, peripheral effects observed in
neglect dyslexia because the disruption directly affects a low-level
representation. MORSEL is also compatible with the late, higher-order
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effects in neglect dyslexia: The PO net is able to reconstruct the ele-
ments of a string that are attenuated by the attentional system via
semantic or lexical knowledge.

I now describe in detail the performance of neglect dyslexia
patients and show that their behavior can be accounted for by the
lesioned version of MORSEL. The patient descriptions and simulation
results are grouped according to six basic phenomena, The first
three—extinction, modulation of attention by task demands, and the
effect of retinal presentation position on accuracy—-appear to arise at
an early stage of processing, while the last three—relative sparing of
words versus nonwords, distinctions in performance within the class
of words, and the influence of lexical status on extinction—appear
more compatible with a deficit localized at later stages of processing.
MORSEL provides a unifying framework to account for these disparate
behaviors.

6.4.1.1 The Extinction Effect

A well-documented finding in the neglect literature is the extinction
phenomenon, when a patient can detect a single contralesional
stimulus but fails to report the stimulus when a second stimulus
appears simultaneously in ipsilesional space. Extinction can occur
when two words are presented simultaneously in the two visual fields.
Sieroff and Michel (1987) demonstrated further that with a single
word centered across the fovea and subtending the same visual angle
as the two noncontignous words, extinction of information in the con-
tralesional hemifield is less severe. In a similar experiment,
Behrmann et al. (1990} showed that a compound word (such as
PEANUT) is read better when the two component morphemes (PEA and
NUT) are physically contiguous than when they are separated by a sin-
gle blank space. Further, when the two words are separated by a
pound sign (PEA#NUT), performance is still better than in the spaced
condition, despite possible perceptual complications introduced by the
pound sign, lending additional support to the conclusion that extinc-
tion is strongly dependent on the physical separation between items in
the display.

The phenomenon of extinction is consistent with the view that the
visual attentional system attempts to select one of multiple items in
the visual field; in neglect patients, the selection is heavily biased
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toward the rightmost item. This behavior is observed in MORSEL. In
the unlesioned model, when two three-letter words are presented to
the AM, attention selects the left word on 41.3% of trials and the right
on 40.8%; some combination of the two words is selected on the
remaining 17.9% of trials. In the lesioned model, the right word is
nearly always selected because the bottom-up input to the AM from
the retinotopic feature maps is degraded for the left word, thereby
weakening its support. Table 6.5 shows the distribution of attention in
the lesioned model for displays containing two three-letter words.
Each row indicates the percent of presentations in which a given com-
bination of letters is selected; 1, 2, and 3 are letters of the left word, 4,
5, and 6 letters of the right word. The right word is selected over 75%
of the time, with the remainder of the presentations involving selec-
tion of the right word along with the rightmost portions of the left, or
selections of only the rightmost portions of the right word. The AM
clearly demonstrates extinction of the left item when two words are
presented. However, when a single item is presented, either to the
normal or the lesioned model, at least some portion of the item will
always be attended (as discussed in more detail in section 6.4.1.3).

In the normal model, when two items are presented, one will be
selected arbitrarily. If the AM is allowed to refocus on the same
stimuius display, it will select the other item about half the time.
Thus, simply by resetting the AM and allowing it to settle again, possi-
bly with a slight inhibitory bias on the location just selected, both
display items can be sampled. In the lesioned model, however,
refocusing attention is unlikely to alter the selection. As long as the
right item is present the left item is prevented from attracting atten-
tion; this masking does not occur in the normal model.

Table 6.5 Distribution of Attention in the Lesioned AM for Displays Containing Two
Three-Letter Words

Letters Relative Likelihood
Attended of Attentional State
123 456 6.6%
23 456 9.7
3 456 0.1
456 76.2
56 7.2
6 02
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Because the AM serves only to bias processing in BLIRNET toward
the attended region, as opposed to completely filtering out the unat-
tended information, MORSEL will not necessarily fail to detect the
unattended information. This depends on the operation of the PO net,
which attempts to combine the outputs of BLIRNET into a meaningful
whole. Thus, one cannot directly translate the distribution of attention
into a distribution of responses. Nonetheless, the strong right-sided
bias will surely affect responses, particularly for simple stimuli which
cannot benefit from the PO net’s application of higher-order
knowledge. For instance, in the task of detecting a single or a pair of
simultaneously presented flashes of light, commonly used to test
extinction, responses can only be based on the stimulus strength fol-
lowing attenuation by the AM.

6.4.1.2 Modulation of Attention by Task Demands

The strong predominance of right-biased responses in neglect patients
can be modulated under certain conditions. Karnath (1988) showed
that patients always reported the right-sided stimulus first when given
the free choice in naming order of two bilaterally presented stimuli.
The left-sided stimulus was often neglected in these cases. When
patients were instructed to report the left-sided stimulus first, they
were able to report both stimuli. A similar result in the domain of
reading was found by Behrmann et al. (1990). One of their patients
with neglect dyslexia (AH) reported the left-sided word on only 4% of
trials when two words were presented simultancously, When
instructed to report the left-hand word first, AH reported both words
correctly on 56% of trials. An overt attentional shift provided by
cuing patients to a stimulus on the left has been shown to overcome
the neglect deficit in other tasks too (Riddech & Humphreys, 1983).
These findings suggest that the distribution of attention can be influ-
enced by task instructions.

In MORSEL, two sources of information can guide attention to loca-
tions: data driven and conceptually driven. These two sources simply
add together to determine the selection of a location. In the lesioned
model, the data-driven inputs for the left portion of the retina are
weakened, but the conceptually driven inputs are undamaged; hence,
sufficiently strong top-down guidance can compensate for the deficit
in bottom-up control of attention. Simple simulation experiments
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readily demonstrate this result (Mozer & Behrmann, 1990b). This
result makes the poeint that the deficit in MORSEL is attentional and
not perceptual. A true perceptual deficit would occur if, for example,
the connections within BLIRNET were lesioned. MORSEL’s account
of neglect dyslexia places the locus of damage outside of the recogni-
tion system; further, the effect of the damage on perception can be
overcome via alternative routes—the conceptually driven inputs,

6.4.1.3 The Effect of Retinal Presentation Position on Accuracy

One finding in the literature compatible with a deficit at an early stage
of processing is that performance changes as a function of stimulus
location. Behrmann et al. (1990) presented words to a neglect
dyslexia patient with their left edge immediately next to a central fixa-
tion point (the near position) or in the fourth character position to the
right of fixation (the far position). Words appearing in the far position
were still in the region of high acuity in the patient’s intact visual
field. The words were three to five letters in length. The patient
reported only 28% of the words correctly in the near position, but 44%
in the far position. Thus, performance improved as the stimuli were
displaced farther into ipsilesional space. The effect of presentation
position argues that attention must be operating at least partially in a
retinotopic reference frame, as opposed to an object-centered frame.
If neglect occurred with respect to an object-centered frame, the left
side of an item might be neglected relative to the right, but the
stimulus position in the visual field would not matter. The evidence
for attention operating on a retinotopic frame supports an carly selec-
tion view, i.e., the attentional system chooses among stimuli based on
a low-level representation.

While this conclusion is clearly consistent with the architecture of
MORSEL, it requires some explanation to see how MORSEL accounts
for the effect of presentation position on accuracy. Consider first the
normal model being shown a single word. Independent of word
length, if the letters are arranged sufficiently close to each other, the
AM will always select the region of retinotopic space corresponding to
the entire word. In the lesioned model, however, the input strength of
the left side of the word is less than the right side, often causing the
left side to be suppressed in the AM selection process. Consequently,
BLIRNET analyzes the word with a relative degradation of the left
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side. This degtradation propagates through BLIRNET, and to the extent
that it prevents the PO net from reconstructing the word’s identity,
accuracy will be higher in the normal model than in the lesioned
model. The same reasoning applies with the lesioned model alone
when considering presentation of a word on the relative right versus
the left. The farther to the right the word appears, the stronger and
more homogeneous its bottom-up input fo the AM is, and the less
likely the AM is to neglect the leftmost letters. Consequently, accu-
racy will be higher,

Figure 6.7 illustrates three examples of the AM suppressing the left
side of a six-letter word: in the top.row, the rightmost five letter posi-
tions are attended; in the middle row, four letters are attended; and in
the bottom row, three letters are attended. Table 6.6 summarizes the
distribution of attention for a six-letter word presented to the AM in
cach of three refinal positions. The standard position refers to the
presentation position used in figure 6.7; the shifted positions refer to
moving the word one or two letter positions (3 or 6 cells) to the right
of the standard position. As expected, when the word is moved farther
to the right, the AM is more likely to focus on its initial letters.

The AM’s attentional focus affects BLIRNET’s processing of a word
and ultimately, the accuracy of report. Nonetheless, the detailed
operation of BLIRNET was not simulated because BLIRNET did not
have a sufficiently large set of letter clusters for the current simula-
tions. Instead, its essential properties have been incorporated into a
simple algorithm that determines letter-cluster activations for a partic-
ular input stimulus and attentional state, as was done in section 6.3.5.

The next stage in processing the stimulus is to feed the output of
BLIRNET to the PO net, allow the PO net to settle, and then determine

Table 6.6 Distribution of Attention in the Lesioned AM for Displays Containing One
Six-Letter Word

Relative Likelihood of Attentional State
Letters Attended Standard Position Shifted Righl Shifted l-ii.ght
One Position Two Positions
1234506 8.1% 18.2% 37.2%

234506 14.6 24.5 31.9

3450 30.1 33.7 25.8

456 33.0 20.0 5.0

56 13.9 3.6 6.1

6 0.3 0.0 0.0
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which of a set of alternative responses best matches the final PO net
activity pattern. When a stimulus, say PARISH, is fully attended, the
PO net almost always reads out the correct response. When, say, only
the last three letters of PARISH are attended, the PO net often is able to
reconstruct the original word; other times it fabricates a left side, read-
ing out instead RADISH or POLISH or RELISH; and occasionally it just
reads out the attended portion, ISH, although the influence of the sem-
lex units acts against the read out of nonwords.

To test the effect of stimulus presentation position in MORSEL, we
conducted a simulation using 6 six-letter words. The probability of
correct response was 49% for words presented in the standard posi-
tion, 63% for words one position to the right, and 79% for words two
positions to the right. Thus, the peripheral lesion in MORSEL does
result in a retinotopic deficit as measured by reading performance.
Performance is better than would be expected by examining the distri-
bution of attention alone, thanks to the reconstruction ability of the PO
net: Although the entire word is attended on only 8% of trials (for the
standard position), the word is correctly reported far more
frequently—49% of trials. Nonetheless, the retinal position of the
stimulus does come into play; the PO net is not so effective that accu-
racy is absolute,

6.4.1.4 Relative Sparing of Words Versus Norwords

A general finding in the neglect dyslexia literature is that the reading
of words is less affected by neglect than the reading of pronounceable
or unpronounceable nonwords (Behrmann et al., 1990; Brunn &
Farah, 1990, Sieroff, 1989; Sieroff et al., 1988). MORSEL suggests
that words gain an advantage by way of semantic or lexical support.
Specifically, the PO net acts to recover the portion of a letter siring
suppressed by the AM using both orthographic knowledge (the con-
nections among letter-cluster units) and semantic or lexical knowledge
(the connections between letter cluster and semlex units). This gives
words an advantage over pseudowords, which lack the support of
semantic and lexical knowledge, and an even greater advantage over
nonpronounceable nonwords, which lack the support of orthographic,
semantic, and lexical knowledge.

A simulation study was conducted using the lesioned version of
MORSEL to compare performance on twelve five-letter words and
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twelve five-letter pseudowords. The two conditions differ in that the
words have an associated representation in the semlex units whereas
the pseudowords do not. The lesioned MORSEL correctly reported
39% of words but only 7% of pseudowords. In comparison, the
neglect dyslexia patient HR studied by Behrmann et al. (1990)
correctly reporied 66% of words and 5% of pseudowords for stimuli
of four to six letters'®

To summarize the implications of the current simulation, MORSEL
provides a mechanism by which semantic or lexical knowledge can
help compensate for noisy sensory data. This results in differential
performance for words versus pseudowords because pseudowords do
not benefit from such knowledge.

6.4.1.5 Distinctions in Performance Within the Class of Words

Studies examining the lexical status of a letter string have shown a
difference in accuracy between words and nonwords, but recent work
has found a more subtle influence of psycholinguistic variables on
performance. Behrmamn et al. (1990) compared performance on
words that have a morpheme embedded on the right side—for exam-
ple, PEANUT, which contains the morpheme NUT, and TRIANGLE,
which contains ANGLE—and words having no right-embedded
morphemes—for example, PARISH and TRIBUNAL. Although the
patient studied by Behrmann et al. showed no difference in accuracy
for the two stimulus types, a distinction was found in the natare of the
errors produced, The upper portion of table 6.7 summarizes the
responses of the patient for words that contain right-embedded mor-
phemes (hereafter, REM words) and words that do not {(comtrol
words). Words were presented in two positions, either immediately to
the right of fixation (the near condition) or several letter spaces
further to the right (the far condition). Responses were classified into
three categories: correct responses, neglect errors (in which the right
morpheme or its syllable control is reported, i.c., NUT for PEANUT or

13 Little effort was taken to obtain quantitative fits to the data because the quantitative
data reported in Behrmann et al. is self-contradictory: the patient performs quite well
in one experiment but then poorly with similar stimulus materials in another. This is
because experiments were conducted some weeks apart, and therefore reflect different
stages of recovery of the patient and different overall levels of arousal and motivation.
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Table 6.7 Distribution of Responses on Word Reading Task

Neglect Dyslexia Patient (from Behrmann et al., 1990)

Near Condition Far Condition
Response REM Wds Control Wds REM Wds Control Wds
Type {(PEANUT) (PARISH) (PEANUT) (PARISH)
Correct 43% 40% T9% 76%
Neglect Error 39 4 13 4
Other Error 18 56 9 20

Simulation of Lesioned MORSEL

Near Condition Far Condition
Response REM Wds Control Wds REM Wds Control Wds
Type {PEANUT) (PARISH) {(PEANUT) {PARISH)
Correct 39% 44% 75% T6%
Neglect Error 32 0 9 0
Other Error 29 56 16 24

ISH for PARISH), and all other errors. The other errors consist mainly
of responses in which the rightmost letters have been reported
correctly but alternative letters have been substituted on the left to
form an English word, for example, IRISH or POLISH for PARISH
(these errors have been termed backward completions). In both near
and far conditions, overall accuracy is comparable for REM and con-
trol words, but neglect errors are the predominant error response for
REM words and backward completions for control words.

Our simulation study used twelve compound words and twelve con-
trol words—half six letters and half seven—from the stimulus set of
Behrmann et al. (1989). The distribution of responses produced by
lesioned MORSEL is shown in the lower portion of table 6.7. Compar-
ing the upper and lower portions of the table, it is evident that the
model produces the same pattern of results as the patient. The differ-
ence in accuracy between near and far conditions confirms the previ-
ous finding concerning the effect of retinal presentation position.
Overall accuracy is about the same for REM and control words,
Neglect errors are frequent for REM words, whereas backward com-
pletion errors (the primary error type in the "other error” category for
the simufation as well as the patient} are most common for control
words. The only discrepancies between the patient and simulation
data are that MORSEL produces about a 5% lower neglect error rate
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uniformly across all conditions and a slight accuracy advantage for
control words. These discrepancies are addressed in Mozer and
Behrmann (1990a).

The difference in performance for the two word classes is explained
by the action of the semlex units. These units support neglect
responses for REM words but not control words. The same effect was
responsible for the basic word advantage in the word/pseudoword
simulations. However, in the present simulation, the influence of
semlex umits acts not to increase the accuracy of report for one
stimulus type but to bias the network toward one type of error
response over another when the perceptual data is not strong enough
to allow the PO net to reconstruct the target.

6.4.1.6 The Influence of Lexical Status on Extinction

The last two sections presented experimental results that were
explained by MORSEL in terms of an interaction between attentional
selection and higher-order stimulus properties. However, the tie to
attentional selection is somewhat indirect because the stimuli were
single words or pseudowords and attention is generally thought of as
selecting between two competing items, not selecting between por-
tions of a single item.

Using the extinction paradigm, Behrmann et al. (1990) have been
able to show that the ability of a neglect dyslexia patient to select the
leftmost of two words is indeed influenced by the relation between the
words. When the patient was shown pairs of semantically unrelated
three-letter words separated by a space, e.g., SUN and FLY, and was
asked to read both words, the left word was reported on only 12% of
trials; when the two words could be joined to form a compound word,
e.g., COW and BOY, the left word was read on 28% of trials. (On all
frials where the left word was reported, the right word was also
reported.) Thus, it would seem that the operation of attention to select
among stimuli interacts with higher-order stimulus properties.

One natural interpretation of this interaction is that the attentional
system is directly influenced by semantic or lexical knowledge, as
proposed by late-selection theortes of attention. MORSEL provides an
alternative account in which attention operates at an early stage, but
because unattended information is partially processed, later stages can
alter the material selected. Thus, one need not posit a direct influence
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of higher-order knowledge on attentional selection to obtain behavior
in which the two interact.

To describe how MORSEL can account for the interaction, 1 begin
with a description of the lesioned model’s behavior and then turn to
simulation results. When two items are presented to the lesioned AM,
usually the right word is selected (table 6.5). Consequently, BLIRNET
strongly activates the clusters of BOY when COW and BOY are
presented, partially activates the clusters of COW and, because BLIR-
NET has some difficulty keeping track of the precise ordering of
letters, weakly activates clusters representing a slight rearrangement
of the stimulus letters, OWB and WB_Y. These latter clusters support
the word COWBOY. The overall pattern of letter cluster activity is thus
consistent with COWBOY as well as BOY. Because both words receive
support from the semlex units, the PO net can potentially read out
cither; thus, in the case of COWBOY, the left morpheme is read out
along with the right. When the two morphemes cannot be combined
to form a word, however, the semlex units do not support the joined-
morpheme response, and the PO net is unlikely to read the two mor-
phemes out together.

There is another avenue by which the left morpheme may be read
out: the patient may be able to shift attention to the left and reprocess
the display. In the experiment of Behrmann et al., this seems a likely
possibility because all trials contained two words and the patient’s
task was to report the entire display contents. Although the patient
was not explicitly told that two words were present, the observation of
both words on even a few trials may have provided suofficient incen-
tive to try reporting more than one word per trial. The patient may
therefore have had a top-down control strategy to shift attention left-
ward, MORSEL is likewise able to refocus attention to the left on
some firials using top-down control (Mozer & Behrmann, 1990b).
This will cause an increase in reports of the left morpheme both for
related and unrelated stimulus pairs.

Twelve word pairs were used in the simulation; six were relafed
morphemes, which can be joined to form a compound word, and six
were unrelated morphemes, which do not combine in this manner,
The left morpheme was reported on 14.1% of trials for related mor-
phemes but only 2.8% for unrelated morphemes. Thus, the strength of
semantic or lexical knowledge is sufficient to recover the extinguished
information on the left for two morphemes that can be combined to
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form a word. Assuming that top-down control of the AM allows
MORSEL to shift attention to the left and reprocess the display on
some proportion of the trials, 8, we can obtain a good guantitative fit
to the data. We arbitrarily pick & to be 10%, which makes the total
percent of trials in which the left morpheme is reported 24.1% for
related morphemes and 12.8% for unrelated morphemes. These
results are in line with the patient data obtained by Behrmann et al—
28% and 12%.

Interestingly, on trials in which just the right morpheme is reported,
MORSEL occasionally produces left neglect errors, for example,
reporting ROY for BOY. Behrmann et al.’s patient made similar errors,
Thus, both left-item extinction and left-sided neglect can be observed
on a single trial.

MORSEL makes further predictions concerning the factors that
influence extinction for morpheme pairs, including the following
(which have yet to be tested on neglect patients). First, the physical
separation between the two morphemes is important: the further apart
the morphemes are, the less activation BLIRNET will produce for the
internal clusters of the joined morpheme—e.g., OWB and W OY of
COWBOY. This will reduce the likelihood of the PO net reading out
COWBOY. Patients have been shown to perform better when there is
no space between iwo morphemes than when there is a fixed space
(Behrmann et al., 1990; Sieroff & Michel, 1987), but these studies
have not manipulated spacing as a continuous variable. Interitem
spacing could explain the result of Sieroff et al. (1988) that perfor-
mance on COW BOY (with two spaces between the words) is no better
than on BOY COW, in apparent contradiction to the effect of related
motphemes obtained by Behrmann et al. The second factor that may
influence extinction is semantic relatedness of the two morphemes.
The particular effect we have simulated depends not on the two mor-
phemes being semantically related, but on the fact that they can be
joined to form a lexical item. Semantic relatedness alone may allow
for a reduction in extinction, but it would not be by exactly the same
mechanism (Mozer & Behrmann, 1990a).

6.4.1.7 Discussion

Previous neuropsychological studies of neglect dyslexia have
advanced disparate explanations of the deficit. For example, the fact
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that stimulus position, orientation, and physical features are important
determinants of performance has been taken as support for the fact
that the attentional deficit arises at peripheral stages of processing
(Behrmann et al., 1990; Ellis et al., 1987). This interpretation is
incomplete, however, since it does not explain why lexical and mor-
phemic effects also play an important role in performance. A second
group of explanations have been proposed to account for the superior-
ity of words over nonwords and for the role of morphemic composi-
tion in reading. One theory falling into this latter group postulates
that reading of words is automatic and attention-free and is thus
immune from attentional deficits (LaBerge & Samuels, 1974; Sicroff
et al.,, 1988), whereas nonwords are subject to such deficits because
they necessarily require attention. Clearly, these two types of expla-
nations draw on entirely different theoretical perspectives.

While researchers have recognized the need for a unified explana-
tion that can take into account both early and later stages of process-
ing, MORSEL provides the first explicit, computational proposal. A
single lesion—to the connections that help draw attention to objects in
the visual field—is sufficient to account for a remarkable range of
behaviors, some of which are compatible with a deficit at an early
stage of processing and others which might naturally be interpreted as
arising at later stages of the system. Although the lesion in MORSEL
is indeed at an early stage of processing, higher-order knowledge at
later stages may compensate for the peripheral dysfunction.

6.4.2 Attentional Dyslexia

Having provided a detailed account of phenomena surrounding
neglect dyslexia, I turn to another acquired reading disorder, atten-
tional dyslexia, and sketch an account in the framework of MORSEL.
As documented by Shallice and Warrington (1977) and Shallice
(1988), attentional dyslexia patients correctly read single words
presented in isolation, as well as single letters, but performance falters
when multiple items are present. For instance, when several words
appear simultaneously, letters from one word often migrate to the
homologous position of another word. For example, WIN FED might
be read as FINFED. These letter migration errors have also been
observed with normal subjects under conditions of brief masked expo-
sure of multiple words (see section 6.2.3). Although patients have no
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difficulty processing multiple letters as part of a word, as evidenced
by normal performance on reading single words, when the task
focuses on the letters instead of the word, a deficit is observed.
Patients are, for example, unable to name the constituent letters of a
visually presented word. The difficulty is clearly in processing a letter
when surrounded by other letters, because naming performance is near
perfect on individually presented letters. Even when a target letter is
flanked by digits that are of a different color and do not have to be
reported (e.g., the target V in 13V 47), patients still make some errors.
A striking feature of the disorder is that the category of the irrelevant
flankers affects performance: If the flanking symbols are letters—
members of the same category (e.g., HL V R C}, performance is much
poorer. This category effect cannot be due to interference occurring at
the response production stage: When the target is a digit and is sur-
rounded by other digits, interference is marked but when the target
digit is replaced by dots which the patient is to count, performance is
significantly better. Thus, when the output demands are equated,
there is still a significant effect of the category of the flankers in rela-
tion to the targets.

Acquired attentional dyslexia has only been reported in the two
patients described by Shallice and Warrington (1977). However,
Geiger and Lettvin (1987) have described a group of developmental
dyslexic readers who show many of the same characteristics as the
acquired attentional dylexics. When letters arc presented foveally and
in isolation, their subjects are able to identify the letters with no diffi-
culty. If, however, the foveal letters are presented simultaneously
with letiers in the parafovea, the dyslexic subjects are significantly
worse than control subjects at reporting letters closest to fixation.
Geiger and Lettvin (1987) suggest that while normal readers learn a
strategy for suppressing information that is not fixated, the dyslexic
subjects do not. Shaywitz and Waxman (1987) propose a related
explanation in terms of an impairment in covert attentional shifts (in
the absence of explicit eye movements).

Rayner, Murphy, Henderson, and Pollatsek (1989) report a similar
phenomenon in their subject, SJ, an adult with developmental
dyslexia. Although SJ could read whole words and could report the
constituent letters (unlike the subjects of Shallice & Warrington,
1977), letters in parafoveal vision interfered with his processing of the
currently fixated word. The deficit could not be attributed to an
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impairment in overt eye movements: Although SJ’s average eye fixa-
tions were longer than normal and he made more fixations than nor-
mal, he did not show an abnormal pattern of eye movements. Interest-
ingly, SJ’s reading performance improved when information outside
of the fixated window region was replaced with Xs or with random
letters.

The common finding of all these studies is that the presence of
extraneous information in the visual field interferes with processing of
the relevant information. As with neglect dyslexia, a straightforward
explanation can be proposed in terms of damage to the attentional sys-
tem: The damage in attentional dyslexia results in difficulty focusing
on a single item in a multi-item display. Consequently, information
which ought to be filtered out still gains access to higher levels of pro-
cessing, thereby overloading the system and interfering with the pro-
cessing of the relevant information.

In MORSEL, two different types of damage to the AM could yield
this deficit. First, there are many ways that internal parameters of the
AM could be garbled which would result in attention capturing every-
thing present in the visual field (figure 6.8). Second, if the AM is
prevented from reaching equilibrium, attention will be distributed
over multiple items. This is because the AM initially activates all
locations where items appear and then narrows its focus over time. In
the case of developmental dyslexia, a plausible reason why the AM
cannot reach equilibrium is that the time course of attentional settling
is slowed. This behavior is readily modeled in the AM by scaling
down all connection strengths proportionately. Consequently, under
conditions of brief exposure or speeded response, the AM will not
have sufficient time to focus on a single item,

When multiple items are attended in MORSEL, they are simultane-
ously processed by BLIRNET and interference among the items can
occur, One manifestation of this interference in attentional dyslexia
patients is the letter migration phenomenon. Detailed simulations of
letter migrations are reported in section 6.2.3, Basically, migrations
occur in these simulations when two words are presented simultane-
ously and processing time is limited so as to prevent the AM from
selecting a single word. As a result, BLIRNET activates letter clusters
of both words simultaneously, and the PO net occasionally recombines
clusters of the two words into a single migration response. Note that
if one of the words is replaced by a string of Xs or random letters,
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Figure 6.8 Behavior of the AM on two three-letter words with 8=25 (see section 4,1.2
for an explanation of 0). Rather than selecting one word or another, as would the
model with 0 set to the standard value of .5, the AM seitles on both simultanecusly.

there should be less interference because there is less ambiguity in the
resulting pattern of letter-cluster activity. Thus, MORSEL can account
for the improved reading performance of Rayner et al.’s subject SJ.
Letter migration errors are just one illustration of interference
caused by the presence of multiple items. Another is observed when
individual letters are processed simultaneously, for example HL VR C.
While BLIRNET may be capable of identifying multiple letters in
parallel, performance degrades with multiple letters because of
interactions within BLIRNET that produce unpredictable spurious
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activations. For instance, V and L might result in some activation of
the letter N. Consequently, it becomes more difficult to discern what
is actually present from the pattern of activity produced by BLIRNET.
This explains why performance on a target letter is better when the
letter is presented in isolation than when embedded in other items.

What remains is to explain the category effect—why performance
is so0 much worse for a letter flanked by irrelevant letters than digits.
MORSEL’s account is based on the fact that the output of BLIRNET
specifies letter and word identities, but no location information.
Localization is achieved when the AM focuses on single objects.
When the AM is unable to do so, location information cannot be
recovered, Consequently, when the target and flankers are all of the
same category, for example, HL V R C, MORSEL will generally be able
to detect the individual items but will be unable to determine which is
the target. In support of this explanation, Shallice and Warrington
note that when their patients made an error, there was a strong ten-
dency for the reported letter to be one of the flankers (36% of errors
for one patient, 77% for another). Note that localization is irrelevant
when the target and flankers are members of different categories, for
example, 13v47. In this example, it is trivial to determine which
item to report on the basis of identity alone because there is only one
letter present. Thus, MORSEL explains why performance improves
when the target and flankers are of different categories.

The final phenomenon regarding atientional dyslexia that needs to
be explained is why patients are unable to name the constituent letters
of a visually presented word. This requires a bit of elaboration as to
how MORSEL would read letter-by-letter. The pattern of activity pro-
duced by BLIRNET in response to an isolated letter is quiie different
than for the same letter in the context of a word. For example, an iso-
lated E yields activity in the letter clusters **E, *E*, and E**, whereas
the E in, say, FED yields activity in #¢_E, FE_# E_**,* _ED, *FE, FED, and
ED*, While the former pattern of activity is tied to the verbal response
"E," the latter is not. Thus, to report letters of a word individually, it
is necessary to process them individually. This involves sequentially
focusing attention on single letters, thereby suppressing activation
from the neighbors and obtaining a pattern of activity identical to that
which would be obtained by a single letter presented in isolation.
Because the damaged attentional system is unable to focus on indivi-
dual letters, letter-by-letter reading is impossible.
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6.4.3 Surface and Phonological Dyslexia

In this final section, I speculate on two further acquired disorders of
reading, phonological and surface dyslexia. Phonological dyslexia is
a selective impairment in the ability to read pronounceable nonwords
(pseudowords) relative to the ability to read words, Patients often
transform pseudowords into visually simifar words, or are unable to
form any response. Surface dyslexia is a selective difficulty in read-
ing aloud exception words (e.g., YACHT), relative to regularly spelled
words and pseudowords. Patients often regularize the exception
words, that is, apply English spelling-to-sound rules to words that
violate the rules (e.g., pronouncing YACHT as "yakt").

These disorders have given rise to much speculation as to the nature
of the processes that carry out the transformation from an orthographic
representation to a phonological one. The predominant account, the
dual-route model (see Coltheart, 1985, for a review), posits that there
are two routes from the printed letter string to a phonological
representation, a lexical and a nonlexical procedure. The lexical pro-
cedure looks up the phonological representation corresponding to a
word’s orthographic representation in a table of lexical items. The
nonlexical procedure converts orthography to phonology by a system
of spelling-to-sound rules. According to the dual-route model, read-
ing nonwords aloud is achieved using the nonlexical procedure, read-
ing exception words by the lexical procedure, and regularly spelled
words by either procedure. Phonological dyslexia results when the
nonlexical procedure is disrupted, surface dyslexia when the lexical
procedure is disrupted.

MORSEL provides an elaboration of the dual-route model. On
MORSEL’s account, orthographic information obtained from the
visual stimulus is represented by the letter-cluster units. Because
MORSEL has no representation of phonology, an additional set of
units must be introduced—the phonological units. These units might
represent the phonological analogue of letter cluster units, what
Rumelhart and McClelland (1986) call Wickelphones. (See Rumelhart
and McCleliand’s paper for a description of this representation, as
well as a possible improvement, the Wickelfeature representation.)
Phonological units interact with the letter-cluster and semlex units of
the PO net, as depicted in figure 6.9. Letter-cluster and semlex units
are reciprocally connected, and phonological units are innervated by
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Figure 6.9 A proposal for how MORSEL might incorporate a phonological representa-
tion. Arrows indicate the flow of activity.

both letter-cluster and semlex units. (Ultimately, it may be necessary
to posit reciprocal connections from the phonological units as well.)
With regard to reading aloud, two pathways are critical: the letter-
cluster-to-phonological (LC-P) and semlex-to-phonological (S-P) con-
nections. LC-P connections represent low-order statistics of
grapheme-phoneme  correspondence, whereas S-P connections
represent the higher-order statistics. Low-order statistics are what one
might call "regularities" of the correspondence—how an individual
letter cluster directly maps to a Wickelphone. Higher-order stafistics
embody special cases, exceptions of the correspondence—how a letter
cluster in the context of other clusters might map to a Wickelphone.
With this machinery in place, an account of phonological and sux-
face dyslexia is possible. This account depends on the assumption,
motivated by other concerns (see section 3.3.3), that processes exter-
nal to MORSEL modulate the overall strength of the link between sem-
lex and letter-cluster units. Disruption of these external processes
have two possible side effects: intensification or inhibition of the S-
LC link. If the link strength is intensified to an extreme, symptoms of
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phonological dyslexia will arise for the following reason. When sem-
lex units have a large influence over letter-cluster units, nonword
inputs are likely to be turned into words; if this influence becomes
overwhelming, all inputs will be turned into words, or perhaps activity
in the PO net will be shut off altogether due to the incompatibility of
bottom-up and top-down influences.

If, instead, the S-LC link were completely choked off, symptoms of
surface dyslexia would arise. The semlex units, no longer having a
source of input, are effectively cut out of the picture. Consequently,
the phonological units would depend on the L.C-P pathway for activa-
tion. The knowledge embodied by these connections would be suffi-
cient only to activate the phonological representations of regular
words and pseudowords. Irregular words would tend to become regu-
larized, or possibly the LC-P connections would be too inconsistent to
permit any response whatsoever.

This account makes two further predictions. First, in the case of
phonological dyslexia, the letter-cluster representation is distorted as
well as the phonemic by the overinfluential semlex units, hence the
claim that not only should patients be unabie to read nonwords aloud,
but they should be unable to copy nonwords except in a letter-by-letter
fashion. Iknow of no evidence for or against this prediction. Second,
in the case of surface dyslexia, choking off the S-L.C pathway should
result in the loss of semantic information. Coltheart (1985) describes
the patient MP of Bub, Canceliere, & Kertesz (1985) who appears to
show this deficit. Indeed, loss of semantics is a central feature of one
type of surface dyslexia (Shallice & McCarthy, 1985).

I have analyzed the complex syndromes of phonological and sur-
face dyslexia only superficially, but the approach suggested by MOR-
SEL is a possible refinement of the dual-routc model. Although
MORSEL’s account is still dual route in that there are two pathways
leading to the phonological code, MORSEL divides up the processing
task somewhat differently and potentially avoids the need for an expli-
cit lexical representation. More important, in MORSEL the two path-
ways are not independent processing systems but are intertwined and
interactive.

This type of account has broader implications for cognitive neurop-
sychology. Until recently, the predominant theoretical paradigm in
the field was to construct models consisting of box-and-arrow flow
diagrams with the underlying assumption that damage affects a single
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component without influencing the functioning of other components.
MORSEL and related connectionist models of neuropsychological
phenomena (Hinton & Shallice, 1989; Patterson, Seidenberg, &
McClelland, 1989) suggest an alternative approach in which the
consequences of damage to a component cannot be predicted by
analyzing the components in isolation because inferactions among
components yield complex, nontransparent effects. Indeed, one of the
basic lessons of connectionism is that it is precisely the interactions
among components that produce interesting behavior, whether the
components are regarded as individual processing units or larger pro-
cessing modules.



7 Evalunation of MORSEL

An evaluation of MORSEL is not complete unless its deficiencies are
also noted. In the sections that follow, I point to shortcomings and
some directions in which MORSEL is currently being extended.

7.1 Shortcomings of MORSEL

7.1.1 The Details are Surely Wrong

I have no strong commitment to the nuts and bolts of MORSEL. In
fact, T believe that many of the details are wrong. The input represen-
tation is not rich enough. The letter-cluster representation should be
augmented with information about overall word shape or length, The
connectivity of BLIRNET is somewhat ad hoc and could be improved
with modern connectionist learning algorithms. The AM dynamics are
too brittle. The PO net requires a more rigorous computational foun-
dation (cf., Hopfield, 1982). The temporal dynamics of the PO net
needs work; it is not sufficiently responsive to changes in its input.
Nonetheless, I have experimented with a variety of alternatives to the
mechanisms reported here, and have been pleased to discover that the
qualitative behavior of MORSEL was remarkably insensitive to the
details.

7.1.2 Lack of Flexibility in Object Recognition

MORSEL is not as flexible as people in recognizing objects. Words
can be read under many permutations: take a line of text, rotate it 45
degrees, or even 180 degrees; arrange the letters vertically instead of
horizontally; double the size of the letters, or vary the size of each
letter individually; insert gaps between letters, or even arbitrary sym-
bols; present letters one at a time by scanning a line of text with a
peep hole; and so on. Certainly, some of these variations are not
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processed by ordinary means, as indicated by slowed response times.
However, other variations, such as global scale and orientation adjust-
ments, seem quite natural.

MORSEL can be modified to yield scale invariance (see section
7.2.1) but affords no easy solution to the problem of orientation
invariance. It is not clear that a complete solution is in order: objects
in unknown orientations cannot be recognized as readily as objects in
known orientations (Jolicoeur, 1990; Rock, 1973}, but once the orien-
tation is known, recognition is relatively straightforward regardless of
orientation. This second fact is easily demonstrated by tilting a book
at an angle. Once the orientation of the book has been determined,
reading of individual words is greatly facilitated. This suggests that
what MORSEL requires is a means of analyzing an object with respect
to a frame of reference. Hinton {1981a, 1981b) has emphasized that
imposing a frame of reference on an object can be critical in percep-
tion. His model of object recognition provides an example of the sort
of normalization mechanism that is missing from MORSEL.

7.1.3 Letter-Cluster Frequency Effects

MORSEL derives explanatory power from the assumption that the
letter-cluster units represent not just arbitrary sequences like vQX,
#yY, or U_29, but rather familiar sequences like ION, *IN, or T_D*. This
assumption is critical in accounting for aspects of letter transposition
errors (section 6.2.2), letter migration errors (section 6.2.3), and the
word superiority effect (section 6.3.3). The specific assumption I have
adopted is that the letter-cluster level consists of the 6000 or so most
frequently occurring clusters in English words, weighted by word fre-
quency. Some low frequency clusters are therefore excluded, such as
U_w* (found only in the word SQUAW), YH_W (ANYHOW), and PSC
(HOPSCOTCH). This affects the performance of the PO net. The PO
net works best when all potential letter clusters of a string are found
among the letter-cluster units. Missing clusters mean fewer interac-
tions in the PO net, which impairs the net’s ability to suppress noise.
Thus, words containing predominantly high-frequency clusters are
read out more easily than words containing low-frequency clusters
(see section 3.3.1).

Unfortunately, this facet of MORSEL is at odds with the experimen-
tal literature. McClelland and Johaston (1977) have reported that
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differences in letter-cluster frequency do not systematically infiuence
the accuracy of perception of letters in words or pseudowords. The
notion of letter-cluster units need not be abandoned, however. One
way to reconcile MORSEL with the empirical results is to suppose that
there is a letter-cluster unit for every letter sequence that occurs in
English. Of the 56,966 possible letter clusters made up of three letters
in four consecutive positions, 24,419 are found in English words
{computation based on Kudera & Francis, 1967). Installing these clus-
ters in MORSEL will not affect the model’s differential performance
on word-like strings as compared to random-letter strings, which is
desirable, but will eliminate the experimentally unsupported differ-
ence in performance between word-like strings containing high-
versus low-frequency clusters.

Alternatively, letter-cluster frequency effects may be eliminated by
a training procedure proposed in section 7.2.3 where letter-cluster
units learn what patterns to respond to on their own, rather than being
assigned a meaning in advance. The consequence of this procedure is
that the units will respond in an even more distributed manner: each
unit might come to represent several letter clusters, and each letter
cluster might be represented by several units (just as Wickelphones
are represented by several Wickelfeatures in the Rumelhart and
McClelland, 1986, verb model). Further, the units learn patterns that
are useful in discriminating one word from another; these patterns will
not necessarily correspond to the high-frequency clusters. It therefore
seems quite plausible that a training procedure that establishes a
representation of letter strings will eliminate letter-cluster frequency
effects, but without altering the basic nature of the letter-cluster unit
responses.

7.1.4 Loss of Location Information is Too Severe

When displays are brief and attention is unfocused, MORSEL has no
means of determining what appeared where because all information
about absolute locations has been discarded by the operation of BLIR-
NET and the other processing modules. For example, if two words are
presented, letter-cluster units appropriate for each word will be
activated. As these units do not encode the spatial source of their
activation, MORSEL will be unable to pin the words down to a loca-
tion. Consequently, many word migration errors are expected. While
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word migration errors do occur (see section 6.2.5), they are relatively
rare, Perhaps MORSEL can be salvaged by the suggestion that even in
brief displays, the system has enough time to partially focus attention,
establishing a gradient of attention. Words will be pulied out in accor-
dance with this gradient (the most active first), giving MORSEL some
ability to recover at least the relative arrangement of words.

Another way out of this bind is to adopt the suggestion of Pashler
and Badgio (1985, 1987), who argue that the visual system has the
ability "to redirect visual attention to the location where a token of an
active [letter or digit] identity is present,” that is, to recover informa-
tion about the location of an item given its identity. LaBerge and
Brown (1989) and Farah, Brunn, Wong, Wallace, and Carpenter
(1990) have also argued for the ability to map from an object-based to
a refinotopic attentional representation in order to focus on task-
relevant objects or parts of objects. We have begun work on incor-
porating a mechanism that accomplishes this mapping into MORSEL
(Mozer, Pashler, & Miyata, 1990). This mechanism is applied after
BLIRNET has identified multiple objects in parallel. Given some
letter deemed to be of interest (the target), the mechanism causes the
AM to shift attention to the location where that letter appears. Atten-
tion shifting is direct in the sense that the mechanism does not need to
scan the display sequentially; it can home in on the target letter
regardless of the amount of information in the display. This mechan-
ism allows for the object-based direction of attention, in contrast to
the location-based direction currently available in MORSEL,

The location-recovery mechanism uses the back propagation algo-
rithm of Rumelhart, Hinton, and Williams (1986), albeit in a some-
what unconventional manner, Back propagation is usually used to
adjust weights in a network in order to obtain a desired pattern of out-
put activity when a particular input is presented. Instead, we have
used back propagation to adjust activities of the AM units to obtain a
pattern of activity in which only the target letter is highly active. The
back propagation procedure therefore provides suggestions to the AM
about how attention might be modulated to focus on the target letter.
These suggestions are used, in conjunction with the AM activation
dynamics, to rapidly focus on the target. Because this procedure can
be repeated to determine the location of any previously identified
letter, it allows for a dynamic binding of letter identity and location, in
contrast to the static binding performed by the visual STM.



172 EVALUATION OF MORSEL

This mechanism can operate only when visual stimulus information
is available because the back propagation algorithm requires that units
in all layers of the network maintain their activity during the back pro-
pagation phase. If the visual stimulus is removed, activities decay,
and the recovery of location information is prevented. Interestingly,
the mechanism makes the prediction that terminating a display by a
pattern mask (which presumably causes the immediate replacement of
elementary feature activations with features of the pattern mask) will
more seriously disrupt the recovery of location information than other
means of limiting performance (e.g., degraded stimulus quality). This
prediction has been simulated, but has yet to be empirically tested.

7.2 Extensions to MORSEL
7.2.1 Scale-Invariant Recognition

I believe that it is a simple matter to expand BLIRNET to perform
scale invariant recognition. The basic idea is to add units in the inter-
mediate layers of BLIRNET with both larger and smaller receptive
fields than those of existing units but with identical connectivity. The
effect is to have units tuned to the same sets of features but at various
scales. This proposal for achieving scale invariance is analogous to
the means by which BLIRNET achieves (ranslation invariance: For
translation invariance, BLIRNET requires isomorphic units operating
at each location; for scale invariance, it requires isomorphic units
operating at each scale. Just as successively higher layers of BLIRNET
collapse across space, so should higher layers collapse across scale, so
that by the penultimate layer, BLIRNET has factored out not only the
explicit representation of location but also size. The scheme requires
that connection strengths be replicated not only across the retinotopic
map, but across the scale map as well. However, these connection
strengths are prewired and do not change as a function of experience,

7.2.2 Beyond Letter and Word Recognition

I have promoted MORSEL as a model of two-dimensional object
recognition, yet have discussed primarily the recognition of upper-
case letters and words. Extending MORSEL beyond letter and word
recognition is straightforward, One means of doing so is by including



EXTENSIONS 173

additional processing modules. For instance, a color detection module
and a letter-case detection module would allow other attributes of
letters to be identified. MORSEL can also be extended by training
BLIRNET to recognize other shapes. Because the internal layers of
BLIRNET are not tuned specifically for letter and word recognition,
BLIRNET is a general architecture that can be used to achieve
translation-invariant recognition of arbitrary two-dimensional line
drawings. To do so, an output representation must be determined for
the shapes of interest, and BLIRNET must learn to recognize these
shapes just as it learned to recognize words. Introducing more com-
plex shapes may require that the set of elementary features be ela-
borated (e.g., to include units detecting corners, T-junctions, etc.), but
this does not affect the operation of BLIRNET.

7.2.3 A Mulii-Stage Attentional Mechanism

Neurophysiological data from Moran and Desimone (1985) suggest an
intriguing and computationally powerful modification to MORSEL’s
attentional mechanism. Moran and Desimone trained monkeys to
attend to a stimulus at one location in the visual field and ignore a
stimulus at another. Visually responsive cells in prestriate area V4
and inferior temporal cortex were found to dramatically reduce their
response to the unattended stimulus, but only when the attended
stimulus was also within the cell’s receptive field. MORSEL simply
cannot account for this result. In MORSEL, units that would
correspond to those studied by Moran and Desimone are found in the
higher layers of BLIRNET. The response of these units is modulated
by attention because the AM suppresses the flow of activity from unat-
tended stimuli at an early stage of BLIRNET. However, the suppres-
sion of uvnattended stimuli occurs regardless of their proximity to
attended stimuli, in contradiction to Moran and Desimone’s finding.
Reconsidering this finding in light of MORSEL, 1 have proposed a
modification to the AM that will make MORSEL both consistent with
the neurophysiological data and a more computationally powerful
model (Mozer, 1990; see also Treisman & Gormican, 1988, for a sitni-
lar idea). The modification is based on the observation that attention
is necessary in MORSEL to suppress interference among multiple
items presented simultancously. Interference occurs when features of
two items converge on the same detector in BLIRNET. At low layers
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of BLIRNET, such collisions occur only for features of two nearby
items, while at higher layers, features from increasingly distant items
collide because the unit receptive fields broaden. From this perspec-
tive, there is no need to suppress unattended information unless it col-
lides with the attended. Consequently, attention should be applied in
stages corresponding to the layers of BLIRNET. At each stage, the
system only needs to suppress features of unattended items that will
collide with the attended item at the next layer of BLIRNET.

Whether an unattended item is suppressed at a given stage will
depend on its proximity to the attended item, consistent with the
Moran and Desimone data. Further, because an unattended item will
be processed to a fairly high level if it is physically distant from the
attended item, this scheme is an improvement over the current imple-
mentation of MORSEL: it allows greater analysis of unattended infor-
mation at no cost. 1t thus makes better use of the dedicated computa-
tional resources in BLIRNET, assuming that activations in the inter-
mediate layers of BLIRNET can be used to influence behavior in some
manner.

The implementation of this scheme is a straightforward extension
of MORSEL. It involves having an attentional stage corresponding to
each layer of BLIRNET, compared to the current model which has just
one stage corresponding to the input layer of BLIRNET. Each atten-
tional stage operates much as the AM, except that competition among
attentional units should be local, with the range of competitive
interactions determined by the receptive field sizes in BLIRNET.
Thus, at a given attentional stage, items in relatively distant locations
can be attended simultancously.

This scheme makes a highly counterintuitive prediction. Because
increasing the distance between relevant and irrelevant items allows
for increased analysis of the irrelevant item, it should facilitate
incidental detection of higher-order properties of irrelevant items
(within the limits of visual acuity). This prediction is not only coun-
terintuitive but is the opposite of that made by gradient models of
attention (LaBerge & Brown, 1989). Unfortunately, testing the pred-
iction is a bit tricky as the analysis of the irrelevant items cannot be
measured directly. This is because irrelevant items are eventually fil-
tered out, and hence are not available for direct, conscious report.
However, an indirect priming paradigm might be useful for testing the
prediction,
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7.2.4 Towards a Realistic Training Scenario

The procedure by which MORSEL learns to recognize words is unna-
tural. A collection of letter-cluster units is created in advance, and a
teacher instructs MORSEL to associate visual patterns with a subset of
these units. When children learn to read, they are not shown a word
and then told, "Whenever you see this word you should activate neu-
rons 14, 97, 148, and 512." The absurdity of this point stems from the
fact that children are given no explicit instruction as to the internal
representation they should construct in response to a stimulus. Is there
a more realistic training scenario for MORSEL, one that provides the
system with information analogous to that which a child receives, and
also one that yields a letter-cluster-type internal representation? In
this section, I sketch an idea that seems to be on the right track.

Children learn to read after they have mastered other aspects of
language and cognition, such as auditory word recognition and attach-
ing semantic properties to objects. Thus, T assume that in MORSEL’s
initial state, phonological and semantic units are already in place (see
figure 6.9). Phonological units are activated by a spoken word,
semantic vnits by visual images of objects. On the view I wish to
present, the goal of learning to read is to form associations between
the visual images of printed words and the corresponding phonologi-
cal and/or semantic (hereafter, PS) representation. The PS representa-
tion is assumed to have been activated prior to presentation of a word
by a teacher who has either spoken the word or has pointed to the
relevant object.

The architecture of the system I propose is no different than the
current configuration of MORSEL: The visual input maps through
several layers to a set of untrained letter-cluster units, which in turn
map to the PS units. The only difference between this new training
procedure and the one previously described is that the letter-cluster
units function as hidden units rather than output units because the
error signal to the system is injected at the PS level. Using the back
propagation algorithm, the response properties of the letter-cluster
units can be adjusted toward the goal of activating the appropriate PS
representation in response to a visual stimulus.

The letter-cluster units resulting from this training regimen should
detect leticr-cluster-type patterns, for the following reason. There are
far fewer letter-cluster units than words, so the letter-cluster units
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cannot be tuned to specific words. Just as a word-level representation
won’t suffice, neither will a letter-level representation: BLIRNET dis-
cards enough positional information that a letter-level representation
cannot maintain the relative positions of the letters; additional context
is necessary. Thus, the resulting letter-cluster representation must be
intermediate between the letter and word levels.

This point can be argued in another way. When learning to read,
children scan words sequentially, letter by letter. Suppose that during
training, MORSEL behaves as a letter-by-letter reader, focusing atten-
tion on each letter in turn. If the spotlight of attention is broad enough
to include some neighboring letters, the input to MORSEL will then
consist of a sequence of spatially constrained snapshots of the word
being read. For example, presentation of DEAR might result in the
sequence of inputs *DE, DEA, EAR, AR*—the asterisk indicating an end
of word delimiter. T have developed a leaming algorithm that con-
structs a letter-cluster-type representation based on input sequences of
this sert (Mozer, 1989, 1990),

Consider the simple task of training a network to recognize four
words: DEAR, DEAN, BEAR, and BEAN. Output of the network consists
of four units, one for each word (this might correspond to a localist
semantic or lexical representation). Between the input and output
layers is a hidden Jayer, consisting of two units. Each hidden unit is
connected back to itself, so that once it becomes active, it remains so
until the end of the sequence. The training signal to the network
comes at the end of the sequence. To discriminate among the four
words, the network must discover the distinction between P and B in
position 1 and between R and N in position 4. It would be sensible if
one hidden unit responded to, say, *DE or DEA and the other to AR* or
EAR. What in fact happens, though, is that one unit responds to a mix-
ture of *DE. and DEA—with the corresponding letters superimposed on
one another-—and the other to a mixture of AR* and EAR. Thus,
although the hidden units respond to letter-cluster-type patterns, the
resulting representation is somewhat more distributed than the letter-
cluster representation built into MORSEL. The algorithm used in this
simple problem has been successful at learning to discriminate among
a much larger class of strings (Mozer, 1989, 1990), and fits nicely
with the scenario described above for training MORSEL’s letter-cluster
units. TFurther developmental studies of MORSEL’s acquisition of
reading skills should prove useful in clarifying representational issues.
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7.3 The Successes of MORSEL

Although its name suggests something small in scale, MORSEL is
intended to embody a significant chunk of the visual system, Evaluat-
ing a model] of this scope is difficult. MORSEL is a clear success on
several grounds, however.

o It is a significant feat that MORSEL can perform translation-
invariant recognition and multiple-object recognition, let alone
that it does so without knowledge replication (cf, Fukushima &
Miyake, 1982) and compares favorably to. other connectionist
models (see section 2.1 and appendix A).

e MORSEL explains a wide spectrum of psychological
phenomena in the domain of letter and word perception and
spatial attention. MORSEL also makes empirical predictions,
several of which have been experimentally confirmed (e.g.,
Behrmann, Moscovitch, & Mozer, 1990; Mozer, 1989). In
chapter 6, I perhaps downplayed the predictive aspect of MOR-
SEL because it was difficult to distinguish between data taken
into consideration when constructing the model and data that
are natural consequences of the model. With a model as broad
as MORSEL, the distinction does not seem critical. Nonetheless,
it is impressive that MORSEL has provided a framework for
interpreting a wider range of phenomena than it was originally
designed to accommodate. For instance, the data on misspel-
ling detection {section 6.3.5), visual search (section 6.3.1), and
neglect dyslexia (section 6.4.1) were cither not available or
were not known to me when MORSEL was originally designed,
yet the simulations of these phenomena required no modifica-
tions of the model beyond specifying some details that were
irrelevant in earlier work,

e Even after five years of effort, MORSEL still has many interest-
ing directions in which it might be extended to become an even
broader and more complete model of visual perception and
attention. Several of these directions are described in section
7.2. Despite its generality and extensibility, MORSEL is suffi-
ciently specific that it can be falsified by future empirical
research.
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¢ Even though MORSEL is surely wrong in many details, it has
been a valuable exercise to consider the overall architecture of
the system—how various components interact, such as form
recognition and attention, as opposed to just how the individual
components operate in isolation.

Psychological models of visual perception and attention have
tended toward two extremes. At one extreme are models that provide
an explicit account of a circumscribed phenomenon—concrete,
mathematically or computationally well-defined, but narrow in scope.
At the other extreme are models that provide a general architecture for
understanding a range of phenomena, but whose breadth is obtained at
the expense of detail. MORSEL straddles the gap between these
extremes. Several recent computational models are also situated in an
intermediate position, notably the work of Chapman (1990a) and
Grossberg (1988; Grossberg & Mingolla, 1985). By adopting a
broad-ranging yet computationally detailed perspective, these models
are far richer than the data they purport to explain. They deliver an
integrated,  computational  theory of visual information
processing.



Appendix A: A Comparison of Hardware
Requirements

In this appendix, I compare the hardware requirements of BLIRNET to
two models that perform somewhat the same function, PABLO
(McClelland, 1985, 1986a) and mapping networks (Hinton, 1981a,
1981b).

A.1 BLIRNET Versus PABLO

PABLO has only been implemented in a fairly small simulation. I will
consider how much hardware is required of PABLO for it to process
information in a retina the size of BLIRNET's. First, however, it is
necessary to match the two models in terms of their representations.
Local representations were used in PABLO primarily for expository
purposes. It would be unfair to penalize PABLO on this ground. Thus,
for an equitable comparison, distributed representations must be con-
sidered. Suppose PABLO used the same representation of words as
BLIRNET, namely 6000 letter-cluster units, Equating the output
representations of the two models is simple, but equating the input
representations is more problematic because BLIRNET s input is at the
elementary feature level whereas PABLO’s is at the letter level. Even
with a more highly processed input representation, however, PABLO
compares unfavorably to BLIRNET. PABLQ’s input representation is a
distributed encoding of letters, with four units per letter, for a total of
4 x 26 = 104 units.

Now the two models must be matched in terms of the scale of
implementation. The essential question to ask is how many distinct

1 One unit is activated by a particular letter preceded by a blank, one by a letter pre-
ceded by any other letter, one by a letter followed by a blank, and one by a letter fol-
lowed by any other letter. Thus, the presentation of any letter, either alene or in con-
text, will result in the activation of two letter units.
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letter positions there are on BLIRNET’s retina. Given a 36 X 6 cell
retina with each letter occupying a 3 X 3 region, there are 34 x 4 = 136
locations in which a letter might appear. However, these locations are
highly overlapping; it would be unfair to expect that PABLO had a
processing subsystem for each of these locations. Being a bit more
conservative, one could estimate the number of discrete letter loca-
tions, that is, the maximum number of letters that can be simultane-
ously placed on the retina without overlap, at 12 x 2 =24,

A.1.1 Number of Units

The total number of units in BLIRNET is

6
Y. feature_types; X x_dimension; Xy _dimension; ,
1=1

where / is the layer number. With 6000 letter cluster units, this
amounts to

SX36X6+45x12x3+180x6x1+720x3x1
+720x I x1+6000x1x1=12,660

units. PABLO requires one set of programmable letter units and one
set of programmable word units for each of the 24 possible letter loca-
tions, in addition to one set each of central letter and central word
units. Further, there is one connection activation unit for each pairing
of letter and word units. Thus, the total number of units amounts to
(24 + 1) X (104 + 6000) + 104 x 6000 = 776,600, easily an order of
magnitude more than contained in BLIRNET?

A.1.2 Number of Connections

BLIRNET also fares well in terms of the number of connections, but
the computation of this number is somewhat elaborate. The total
number of connections in BLIRNET is

2 McClelland points out that the connection activation units could in principle be im-
plemented as connections rather than processing units. Fven excluding these units,
the fotal number of units in the system is (24 + 1) % (104 + 6000) = 152,600, which
still leaves an order of magnitude difference between PABLO and BLIRNET.
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E‘,xﬁreceptive _field dim; Xy receptive field dim; x
= non_zero_connection_density; X feature types; | x
X_dimension; Xy dimension; X feature_types,
=5.83x333x 348 x5x12x3x45+3.67x3x.139x
45x6x 1x 180+333x1x.067x180x3x1x720+
IxIxX.00139x720x 1 x1x7204+ 1 x 1 x1Xx720%

1 x 1 x6000=4,538,005.

Unfortunately, the connectivity of PABLO is even more complex.
Before making an estimate, the maximum word length must be speci-
fied. Although words of up to 12 letters may be presented, the critical
length of interest is only 4 letters because the letter clusters are made
up of 4-letter sequences. With this number in mind, let us begin.
PABLO requires complete connectivity between programmable letter
and programmable word units, each word unit being connected to 4
letter slots (104 x 6000 x 4 x 24 = 59,904,000); connections between
central letter and central word units (104 x 6000 = 624,000); connec-
tions between programmable Ietter and central letter units
(104 x 24 = 2496); connections from central word units to two con-
nection activation units, representing a single letter, for each of four
letter positions (6000 x 2 x 4 = 48,000}, and connections from each
connection activation unit to its corresponding connection within each
programmable module (4 X 104 x 6000 x 24 =159,904,000). The
grand total here is 120,482,496, nearly 1.5 orders of magnitude greater
than that required by BLIRNET.

This figure can be adjusted up or down, depending on the extent to
which one wishes to defend PABLO. 1 believe the figure to be fairly
conservative, however. The adjustments down are relatively minor,
e.g., eliminating the connection activation units removes 48,000 con-
nections, and eliminating detectors near the edge of the retina due to
boundary effects may cut down the total by 10%. However, adjust-
ments upwards are potentially far more devastating. For instance, 1
assumed that PABLO was concerned simply with recognizing
position-specific letter clusters, which allowed me to set the woud
length to 4 consecutive letters. If we were interested in having each
programmable word network identify all letter clusters in a word,
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rather than only those in the local region, the word length would have
to be upped to 12. Another blow against PABLO is the fact that I’ve
omitted all recurrent connections among programmable word units.
While the pull-out net of MORSEL serves a corresponding function,
MORSEL requires only one pull-out net, whereas PABLO requires
recurrent connections within each set of programmable word units.

McClelland (1986b) has argued that selective programming of the
local networks might significantly reduce the size of a model like
PABLO. Essentially, he suggests that the central structure could pro-
gram local networks to recognize only the relevant patterns, rather
than turning on connections to afl known patterns. Consequently,
each local network needn’t have a full complement of word units but
only as many word units as there are patterns that might be recognized
simultaneously. On first reading this argument is persuasive, and if
correct would significantly reduce the number of units and connec-
tions required by PABLO. However, the argument appears flawed
because the proposed solution creates an enormous mapping problem,
which McClelland fails to address. This mapping problem has two
components: {a) How is the mapping between central word units and
connection activation units performed, given that there is no longer a
fixed correspondence? (b) How is the output of a programmable word
unit to be interpreted, given that its meaning is dependent on the
visual input? These issues must be settled before McClelland’s
{1986b) optimistic estimates of PABLO’s resource requirements can be
seriously considered.

In summary, MORSEL is far more economical than PABLO, both in
the number of units and the number of connections. Despite my
attempt fo compare similar versions of the two models, they are not
exactly comparable. MORSEL must perform more analysis because it
takes as input a primitive featural description of the visual input,
whereas PABLO operates on a letter-level description. In its favor,
though, PABLO may have greater processing capacity, particularly for
displays containing dissimilar words.

A.2 BLIRNET Versus Mapping Networks

Comparing BLIRNET and Hinton’s mapping network is difficult. A
direct unit-for-unit comparison is unfair because BLIRNET uses the
conventional semilinear units while the mapping scheme uses sigma-
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pi units (Rumelhart, Hinton, & McClelland, 1986), which are compu-
tationally far more powerful (Durbin & Rumelhart, 1989). Rumelhart
(personal communication, 1987) has experimented with a more con-
ventional architecture that implements a mapping network, and it is
possible to compare this architecture to BLIRNET. Rumelhart’s net-
work consists of four layers: a refina comparable to L | of BLIRNET, a
location map, a hidden layer that receives input from the retina and
the location map, and an outpur layer that is supposed to contain a
normalized representation of a portion of the retina. Basically, the
location map specifies the region of the retina to be mapped onto the
output layer, yielding a location-invariant representation of a visual
pattern.

The question at hand is, how many hidden units are needed to per-
form this mapping? The hidden units in Rumelhart’s network are per-
forming an analogous function to the units in layers Lo—L 4 of BLIR-
NET, because these layers operate on the retina, L |, to build a normal-
ized representation of sorts in L. The total number of units in layers
L,—1.4 of BLIRNET is

4
> feature types; X x_dimension; Xy dimension;

B L ASXISX34180XOX1+720x3 %1 =6210 .

The number of units required in Rumelhart’s network depends on
the number of positions a word can appear in. Following the earlier
conservative calculation, assume there are 12 discrete horizontal and 2
discrete vertical letter positions on BLIRNET’s retina (although the
true number of overlapping positions is far greater). A word can thus
begin in any of these 24 positions. Rumelhart’s simulation experi-
ments suggest that the number of hidden units required, %, is
O (number_mappings X number_features_mapped ). Here, the
number of mappings is simply 24, but the number of features that
need to be mapped depends on the maximum word length. In hor-
izontal position {, the maximum word length is 13 — 7, and each letter
of a word is represented by 3 X 3 x 5 =45 features, Thus, 4 is on the
order of

12
Y2 x (13 -i)x45="7020,
i=l

about the same number of units as required by BLIRNET.
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I do not have sufficient information to estimate the number of
nonzero connections in Rumelhart’s network at present. In the worst
case, every hidden unit will be connected to every input and output,
for a total of 36 x 6 X 5 X 7020 x 2 = 15,163,200 connections. At best,
and probably closer to the truth, each hidden unit represents the con-
junction of a particular mapping and a particular input feature, and
thus should be connected to exactly one input unit and one output
unit, for a total of 7020 x 2 =14,040 connections. In comparison,
BLIRNET requites 218,008 connections using the estimate from sec-
tion A1.1.2,



Appendix B: Letter Cluster Frequency and
Discriminability Within BLIRNET’s Training Set

cluster

ME_*
M_N*
IN_T
ER_A
ALY
ALY
Y**
**K
*UN
KIN
RY*
O_AL
L_Y*
LLY
TV
NA_I
LY*
INA
NAL
NS
Y
N_TI
00_*
*DO
NT*
*IN
IVE
TY*

freq d’

1 5.36
2 5.24
7 4.90
1 4.58
11 4.56
11 4.55
17 4.54
2 4.52
3 4.52
2 4.52
! 4.51
7 4.49
12 447
12 445
2 4.37
16 4.35
13430
8 427
8 426
25 4.21
i 4.18
I8 4.16
1 4.13
6 4.12
25 412
17 4.11
3 4.11
1 4,11
38 4.09
1 4.08
2 4.08
3 4,08
28 4.08
13 3.99
5 3.98
15 3.95
7 392
18 392
10 3.88
4 3.85
34 384

cluster

1,_D*
LED
VE*
UND
C**
*NO
IN*
D_NG
DLG
IC*
LIT
ON_E
CON
E_Y*
TIC
AN
A_D#
O_§*
N**
108
TH_R
**U
*C0
NIN
*HA
*S_U
*_OM
CHA
COM
*_AM
ALL
NTI
NS*
WA
1_G*
AR¥
AL
G**
NG*
HE *

10_*

freq d’

4 3.84
4 3.84
4 3.84
5 381
1 3.79
5 378
5 3.78
20 377
20 31
1 397
7 3.77
8 3.76
il 375
2 3,75
2 375
5 373
12 371
29  3.67
56 3.66
26 3.65
1 3.64
4 3.63
20 3.63
5 3.63
6 3.6l
1 3,59
9 3.58
12 358
4 3.58
3 3.56
17 3.55
28  3.54
44 3.52
17 351
178 3.51
12 3350
1 3.50
181 3.49
181 349
2 3.48
36 348

cluster

THE
*C L
*MA
B E*
CAL
BL *
HAN
MAN
RAN
AB E
ABL
ION
LLE
*EW
*TH
O #*
& *I

* M
*_IC
*CH
NC_*
E ED
ON_*
*M R
ED#

* QU
*M_S
CE*
N_IN
MIN
OuUs
* HA
* NT
OUN
T_ON
TI. N
PRO
* RO
*AN
ST*
*_UN

freq d’

4 3.48
6 3.47
32 347
6 347
6 3.47
6 346
11 346
8 3.46
16 346
6 3.45
6 3.45
68 345
2 3.44
31 343
4 343
45 341
20 340
6 3.38
2 336
14 3.36
16 3.36
17 335
40 3.35
16 3.34
116 3.34
3 3,33
15 333
18 333
38 333
21 332
1 332
13 3.3%
30 3.3t
3 3.31
35 3.1
55 3.3l
5 3.30
5 3.29
11 329
27 329
4 3.28
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cluster

C_S*
MEN
*S0
W1
ik V
0O_ED
R D*
RED
UN_E
IAN
STO
VE *
* EM
**J
#MI
DIN
ANS
NE*

* HI
D**
TIO
kL P
CHE
*M_N
S _S*
*EN
S_ON
C ek
LT*
**N
*§_0
A T*
LL*
HER
ING
RO.E
M_NT
ANC
ER_O
A_CE
DIS
ER N
LAT
ME_T
**M
“BO
*ME
ENC
SE*
A IO
AN_I
IT_*
AT_O
LE_*
*BR
DS*

LETTER CLUSTER FREQUENCY AND DISCRIMINABILITY

freq d’

3 3.28
25 328
12 327
12 327
1 3.26
8 3.26
30 326
30 326
9 3.26
2 325
14 3.24
1 324
4 323
1 3.22
18 322
25 322
7 321
29 321
2 3.20
135 3.19
57 3.19
7 3.18
2 3.8
33 317
5 3.17
11 316
16 3.16
19 3.15
9 315
16 3.14
10 3.13
10 3.13
4 313
6 312
204 3.12
5 jiz
23 310
15 3.09
5 3.09
15 3.08
3 3.08
35 3.08
14 3.08
24 3.08
75 3.07
8 3.07
18 3.07
6 3.07
8 3.07
40  3.06
17 3.06
4 3.06
46 3.05
7 3.05
4 3.04
2 3.04

cluster

D o
H £k
INS
ISH
ORS
T ]
B O

* HO
ENE
PE_*
#P 0
A LE
EM_N
LE*
DEN
EIN
GRA
RIC

* HE
ELE
*LO
AND
E_ER
* 00
FOR
TO *
OR*
*HE
*O R
TE*
#AL
INT
NCE
ONE
# ND
E £
SIN
EE B
*D_S
*GR
CE_*
ic =
*TO
CTI
AL*
0 T*
TOR
* 08
EA_*
*G A
TON
*BE
*HO
N D+
R_EN
*TA

freq d’
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3.02
3.02
3.02
3.02
3.02
3.02
3.01
3.01
3.01
3.01
3.00
3.00
3.00
3.00
2.99
2.99
2.99
2.99
2.98
2.98
2.97
2.97
2.97
2.96
2.96
2.96
2.95
2.04
294
2.04
2.93
2.93
2.93
2.93
292
292
292
2.91
291
2.91
291
2.91
2.80
2.90
2.89
2.88
2.88
2.87
2.87
2.86
2.86
2.85
2.85
2.85
2.85
2.84

cluster

ILL
N_E*
NED
ANT
N_SS
PAR
T .D#
TA_T
TED
GS*
N_ED
O_IN
RILG
*FO
ERI
IS_E
R
RE*
*E[
AT_*
ECE
E_T*
O_E*
Y
ECT
TTE
AT_D
END
LI.E
BE N
*CA
ELE
ER*
1A_*
I
CAT
ERA
RE_S
RS5*
w4k (O
*C_A
*DI
EL_*
R_NG
*PA
*PO
DER
L %
ND_R
A_IS
ARD
EN_I
I_*
*B_R
A ®=
I_E*

freq d’

2 284
25 234
16 2.84
36 2.83
7 2.83
10 2.83
60  2.83
g 2.83
60 2.83
18 282
32 282
14 282
67 282
10 281
4] 281
18 2.81
82 2.81
26 2.81
32 280
21 2.80
7 2.80
39 280
24 2.80
6 218
4 278
18 278
22 27
25 2M
13 277
44 276
33 276
2 2.76
63 276
1 2.76
3 276
4 2.15
15 275
7 275
63 275
4 274
20 274
g 274
2 274
69 274
20 273
14 273
33 273
30 273
33 273
6 2.72
5 2.72
32 272
2 2,72
13 2.7
21 271
26 271



cluster

#CL
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NER
PRE
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IN_*
IN'T
R_ED
* AL
I_E E
NTE
RIE
RIN
TRA
SSI
TLG
EE G
*DE
AN_*
E_SI
ERE

freq d’

3 2.70
5 2770
12 2.69
13 2.69
6 2.68
206 2.68
7 2.68
7 2.68
14 2.67
6 2.67
82 2.67
5 2.67
75 267
5 2.67
6 2.66
83 266
17 2.65
9 2.65
23 2.65
16 2.65
27 2.65
12 265
12 2.64
43 2,64
3 2.64
5 2.63
14 263
0 2.63
i 2.62
14 262
63 2.62
8 2.62
4 2.62
1 2.62
27 2.62
4 261
9 2.61
27 261
8 2461
32 26l
18 260
& 2,60
84 260
7 259
25 259
18 2,59
36 259
15 257
64 2.57
21 257
20 2.57
26 257
3 2.57
16 256
32 256
43 2.56

LETTER CLUSTER FREQUENCY AND DISCRIMINABILITY

cluster

*)
* 1LE
*S1
O_ES
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N+
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T_RS
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*5C
*TR
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STE
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*_OL
*P_E
*PE
*RE
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*H_R
*1.1
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GE_*
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S8*
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*BA
*CR
*FA
G **

freq o’

31 2,55
8 255
21 2355
21 255
14 255
27 254
295 254
43 2.54
4 2.54
43 2.54
13 2.54
1 2.52
9 2.52
79 2.52
50 252
22 2.5t
5 2.51
15 251
16 2.51
35 251
17 251
15 2.51
8 2.50
27 250
2 250
2 250
14 250
18 2.50
3 2.50
4 250
13 249
18 248
15 248
12 248
22 248
44 2.48
22 248
19 248
30 248
19 247
4 2.47
6 247
2 247
22 247
2 2.46
2 246
23 240
8 246
7 2.45
35 2.4
27 244
23 244
16 244
7 243
17 243
11 243

cluster
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*TE
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*§_ N
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freq

53
9
2
19
21
16
59
4
66
i5
26
12
2
18
14
20
31
16
83
26
36
65
9
44
7
11
236
10
17
1
15
126
i8
12
i9
14
19
14
19
70
7
98
48
49
15
26
4
22
5
20
99
14
45
9
27
25

187

2.43
243
2.42
242
242
242
2.42
2.42
2.40
2.40
2.40
2.40
2.40
240
240
2.39
2.39
2.39
2.39
2.39
238
238
2.38
2.38
237
237
237
2.36
2.36
2.35
2.35
234
234
234
233
2,33
232
232
232
232
2.31
2,30
2.30
230
229
2.29
229
2.28
2.28
2.28
2.28
2.27
2.27
2.26
226
2.26
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LETTER CLUSTER FREQUENCY AND DISCRIMINABILITY

freq d’

23 225
9 225
12 224
20 223
30223
35 222
12 222
4 222
39 222
31 222
60 221
3 2.2t
60 221
54 221
2220
61 220
76 219
6 219
55 219
127 219
21 218
2 218
47 218
6 217
35 217
g 216
40 216
9 216
4 215
5 214
26 214
17 214
54 214

54

2.14

cluster
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g
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freq d’

3 213
114 213
25 213
g 212
49 212
i1 211
252 211
2 21
42 211
47 2,10
20 210
17 2.10
15 210
13 2.09
1 2.09
i1 2.09
50 208
1 2.08
46 207
8 206
62 205
31 205
21 205
1 2.05
27 205
15 2.04
13 2.04
54 2.04
25 202
42 202
43 201
25 201
11 201
74 1.99
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